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Answers to the problems for 14 May

Exam problem 17

(a) Cofactor expansion along the first row yields

14 —-15 —-13 —15 —-13 14
ID|=a 1 _1’—17‘_1 _1'+c‘_1 1’—a+2b—l—c.
Matrix multiplication yields
1 3 =7 a b c a—32 b+35 c¢c—38
CD=1(2 5 1 —13 14 —-15)=1|2a—66 20+71 2c—76
1 2 7 -1 1 -1 a—33 b+35 c—37

If we let a = 33, b = —35, and ¢ = 38, then CD = I3, so C is invertible and

33 —35 3%
C!'=D=|[-13 14 -15
-1 1 -1

(b) Note that the determinant of A is 1-2-—1 = —2 # 0, so A is invertible.
Therefore

AY =CH < Y = A"'CH.
Then, if we let X = C71Y, we get

BX = (C'AC)(C'Y)=C 'AY=C 'CH =H.

Exam problem 19

(a) We get
of _ 2 _ of _ 1.
or 2x+y+2 ’ oy 2x+y+2 ’
*f —4 *f —2 *f -1
ox2  (2x+y+2)2’ oxdy (2w +y+2)?2’ oy2  (2z+y+2)2°

(b) We see that

0 0
—f:()<:>2:1;+y—|—2:1 and —f:()<:>2:1:+y—|—2:1
Ox dy
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Exam problem 19(c)

Hence, the stationary points are precisely the points that lie on the straight line
20 +y = —1.

(c) The set S is closed and bounded and f is continuous, so by the extreme value
theorem f will certainly attain a maximum over S. The stationary points of f lie
on the straight line 2x 4+ y = —1, which does not meet S. Hence, the maximum
point (or points) must lie on the boundary of S.

Along the straight part of the boundary we have x + y = 0, so there we have

f(x,y) = f(z, —2) = In(z + 2) — 2.

Thus we need to investigate the values of p(z) = In(x + 2) — x as = runs through
the interval [—%\/5,% 2]. Since

1
(z) = —1<0
p'(x) o

when = > —1, the function p is strictly decreasing throughout the interval in
question. Hence, the maximum point for f over the straight part of the boundary
is (12, 3v2).
Along the curved part of the boundary we can use Lagrange’s method to solve
the problem
maximize f(x,y) subject to z?+7y%=1.

The only point on the semicircle that satisfies the Lagrange conditions is
(2\/3 L 5). It is easy to see that

r(3v55v5) <f(-5v25ve),

Therefore the maximum point for f over S is (—%\/5, % 2).

However, we can save ourselves the trouble of using Lagrange’s method if
we notice the following: At every point (x,y) in S we have 2z +y > —1, so
2r +y +2 > 1, and therefore f; < 0 and f, < 0. It follows that if we move

2
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straight right or straight up from a point in S, then the value of f will decrease. It
is clear from the figure that we can reach any point in S by starting at a point on
the straight part of the boundary and moving up or towards the right. Hence, the
maximum point for f must lie on this straight line segment, and it follows from
what we saw above that the maximum point is (—%\/ﬁ,% 2). The maximum
value is

funax = (—%f%\/i) —In (2_ %\6) riva

Exam problem 25

(a) We know that A; has an inverse if and only if |A;| # 0. Expansion along the
first row yields

1 ¢
1 1

2 1

’Aﬂ:l‘ 0 1

‘—0+4 ’21%1—ﬂ+ﬂ2:1+t

so A; has an inverse if and only if ¢ £ —1.
Direct calculation gives x + y = 2.

1 0 O 1 0 ¢ 1 0 ¢ 0 0 -t
BA;=[10 0 1 2 1 t]=(01 1), I-BA,=| 0 0 -1 ].

0 1 0 0 1 1 2 1 t -2 -1 1-—t
It is easy to see that [I — BA;| =0 for all ¢, so I — BA; does not have an inverse
for any value of .
(b) We simply solve the matrix equation with respect to X:

B+XA'=A]' &= B+XA[HA, =A['A,

<— BA;+X =1

0 0 -1
— X=I-BA; = 0 0 -1
-2 -1 0

Exam problem 39

(a) The stationary points (x,y) for f are the solutions of the equations

1
1 (r,y) = —— —20+1=0 < =2z —1
1) Ao = —

1 1
2 J(zy) = -2 =0 — =2
2) R = -2 =y

We see that we must have 2y = 2z — 1, so

(3) y=x—.
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If we substitute this expression for y in (1) or (2), we get the equation
1
1

237—5

=2x — 1.

Further,

1 1
1:(233—5)(2x—1):4x2—x—2$+§,

that is,

1
4a* — 3z — = =0.
x x 2

The roots of this quadratic equation are

3E\9-4-4(=3) 3417
8 8

(4) T =

The domain of f is given as that part of the xy-plane where x and y are positive,
so only the + sign can be used in (4). If we then use equation (3) to determine y,
we find that f has only one stationary point, namely

34+ V1T \/1_7—1>
8 ’ 8 ’

(w0, y0) = (

(b) The only stationary point for f is the point (zg,yo) that we found in part
(a). This is then the only possible extreme point for f. The second-order partial
derivatives of f are

1 1
" x, =——Q5—-2=fy z,Y), 9 xz, = T 7 N2
11(2, ) (z +y)2 50(2,y) 12(2, ) (z +y)2
This yields
4
11f22 = ( {’2)22---=W+4>0

for all (z,y) in the domain of f. Since f{; < 0 and f2, < 0 everywhere, it follows
from Theorem 13.1.2 in EMEA (13.1.1 in MA I) that (zo, yo) is a global maximum
point for f.

Exam problem 42

(a) An elementary row operation followed by expansion along the second row
gives

11l -1 |+
9 1| «J =0 b1
b9 4

A = 4 2

B o o+

‘—0:215—4.

A, has an inverse <= |A4| #0 < t # 2.
4
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(b) Direct calculation shows that

(3 1 1 (1 11 -3 1 1
A, 3 —2 2 0] = 3 1 2 1 —2 2 0] =1Is
7T -3 -1 4 1 2 7T -3 -1
(¢) The system can be written as
1 1 1 x 2 x 2
1 2 1 y|=11], thatis, A; |y | =11
4 1 2 z 0 z 0
Hence,
T 2 1 -3 1 1 2 —5/2
y|=A""[1]= 512 2 offr]=| -1
2 0 7T -3 -1 0 11/2

Exam problem 70
(a) We have

flz,y) = (2 +y*)(y +1) = 2’y + 2y’ +2” + ¢,
The first and second order partial derivatives of f are
filz,y) =32y +y° + 2z, fa(z,y) = 2* + 3wy’ + 2y,
11 (z,y) = 6xy +2, 1o (2,y) = 32% + 3y, 2(2,y) = 6y + 2.
b) Stationary points are where both f{ and f} are 0. It is easy to see that
1 2

fi(z,y) =0 y’ = —x(2 + 3zy)

/ — 3
fa(@,y) =0 x” = —y(2 + 3zy)

If we multiply the last pair of equations by y and x, respectively, we get

(%)

() y' = —2y(2 + 3zy) = 2*,

which gives y? = 22, and consequently y = +x. It is clear that (x,y) = (0,0) is
one solution of the equations (x). Are there any other stationary points? If so, we
must have both x # 0 and y # 0.

Suppose first that y = x # 0. Equation (xx) then yields

zt = —2%(2 + 32%) <0,
But that is impossible. We are left with the possibility y = —x # 0, and we get
vt =2%(2-32%) <= 1*=2-32* = 2°=1/2

1
— x:i§\/§,

5

Mat2v09-3f 14.5.2009 715



which yields the two stationary points (3v/2, —1v/2) and (—1v/2,1/2).

In order to classify the stationary points (as local maximum points, local
minimum points, or saddle points) we use the second-derivative test and calculate
A= fli(z,y), B = fi5(z,y), and C = fi,(x,y) at each of the three stationary
points. That gives the results

(x,y) A B C AC — B? Result

(0,0) 2 0 2 4 Local min. point
(%\/5, —%\/5) —1 3 —1 -8 Saddle point
(—3v2,3Vv2) —1 3 —1 -8 Saddle point

(¢c) The extreme value theorem guarantees that f attains a maximum over S. A
maximum point for f over S is either a stationary point for f in the interior of S
or a boundary point of S. For every a # 0 we have f(a,0) = a? > f(0,0) = 0, and
therefore (0,0) cannot be a maximum point. The other two stationary points of
f lie in the interior of S if a is large enough, but then they cannot be maximum
points because they are saddle points for f.

Hence, the maximum point or points must lie on the boundary of S, i.e. on
the circle 22 4+ y? = a2. Along this curve we have f(z,y) = a®(xy + 1), and so we
have the following problem:

maximize a®(xy + 1) subject to 2%+ y* = o’

We use Lagrange’s method with the Lagrangian
L(z,y) = a*(zy +1) = AMa? +y* — a®).
The first-order conditions become

(Li(z,y) =) a’y -2z =0
(Ly(z,y) =) d®x—2xy =0
(constraint:) 2?4 y% =a?

We see that we must have x # 0 and y # 0, and so we get

which gives y? = 22, that is, y = +z.
Since 22 +y? = a?, we now get 222 = a?, so v = ia\/§/2, and there is a total
of 4 points that satisfy the first-order conditions, namely

(L) (L) () (ff)

2 2 2 2 2 2 2 7 2
6
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We calculate the values of f at each of these points and find that the maximum
value is fuax = a?(1 4+ a?/2), which is attained at the first and the last point.

(The other two points give the function value a?(1 — a?/2), and are minimum
points for f along the circle. They will be minimum points for f over all of S if
and only if a > \/5)
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