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Answers to the problems for 14 May

Exam problem 17

(a) Cofactor expansion along the first row yields

|D| = a

∣∣∣∣ 14 −15
1 −1

∣∣∣∣− b

∣∣∣∣−13 −15
−1 −1

∣∣∣∣+ c

∣∣∣∣−13 14
−1 1

∣∣∣∣ = a + 2b + c.

Matrix multiplication yields

CD =

⎛
⎝ 1 3 −7

2 5 1
1 2 7

⎞
⎠
⎛
⎝ a b c
−13 14 −15
−1 1 −1

⎞
⎠ =

⎛
⎝ a− 32 b + 35 c− 38

2a− 66 2b + 71 2c− 76
a− 33 b + 35 c− 37

⎞
⎠

If we let a = 33, b = −35, and c = 38, then CD = I3, so C is invertible and

C−1 = D =

⎛
⎝ 33 −35 38
−13 14 −15
−1 1 −1

⎞
⎠

(b) Note that the determinant of A is 1 · 2 · −1 = −2 �= 0, so A is invertible.
Therefore

AY = CH ⇐⇒ Y = A−1CH.

Then, if we let X = C−1Y, we get

BX = (C−1AC)(C−1Y) = C−1AY = C−1CH = H.

Exam problem 19

(a) We get

∂f

∂x
=

2
2x + y + 2

− 2,
∂f

∂y
=

1
2x + y + 2

− 1,

∂2f

∂x2 =
−4

(2x + y + 2)2
,

∂2f

∂x∂y
=

−2
(2x + y + 2)2

,
∂2f

∂y2 =
−1

(2x + y + 2)2
.

(b) We see that

∂f

∂x
= 0 ⇐⇒ 2x + y + 2 = 1 and

∂f

∂y
= 0 ⇐⇒ 2x + y + 2 = 1

1

Mat2v09-3f 14.5.2009 715



y

x

S

x2 + y2 = 1

2x + y = −1

(−2/
√

5, −1/
√

5 )

(2/
√

5, 1/
√

5 )

(
√

2/2, −√
2/2)

x + y = 0

(−√
2/2,

√
2/2)

Exam problem 19(c)

Hence, the stationary points are precisely the points that lie on the straight line
2x + y = −1.

(c) The set S is closed and bounded and f is continuous, so by the extreme value
theorem f will certainly attain a maximum over S. The stationary points of f lie
on the straight line 2x + y = −1, which does not meet S. Hence, the maximum
point (or points) must lie on the boundary of S.

Along the straight part of the boundary we have x + y = 0, so there we have

f(x, y) = f(x,−x) = ln(x + 2)− x .

Thus we need to investigate the values of p(x) = ln(x + 2)− x as x runs through
the interval

[− 1
2

√
2, 1

2

√
2
]
. Since

p′(x) =
1

x + 2
− 1 < 0

when x > −1, the function p is strictly decreasing throughout the interval in
question. Hence, the maximum point for f over the straight part of the boundary
is
(− 1

2

√
2, 1

2

√
2
)
.

Along the curved part of the boundary we can use Lagrange’s method to solve
the problem

maximize f(x, y) subject to x2 + y2 = 1.

The only point on the semicircle that satisfies the Lagrange conditions is( 2
5

√
5, 1

5

√
5
)
. It is easy to see that

f

(
2
5

√
5,

1
5

√
5
)

< f

(
−1

2

√
2,

1
2

√
2
)

,

Therefore the maximum point for f over S is
(− 1

2

√
2, 1

2

√
2
)
.

However, we can save ourselves the trouble of using Lagrange’s method if
we notice the following: At every point (x, y) in S we have 2x + y > −1, so
2x + y + 2 > 1, and therefore f ′

x < 0 and f ′
y < 0. It follows that if we move
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straight right or straight up from a point in S, then the value of f will decrease. It
is clear from the figure that we can reach any point in S by starting at a point on
the straight part of the boundary and moving up or towards the right. Hence, the
maximum point for f must lie on this straight line segment, and it follows from
what we saw above that the maximum point is

(− 1
2

√
2, 1

2

√
2
)
. The maximum

value is

fmax = f

(
−1

2

√
2,

1
2

√
2
)

= ln
(

2− 1
2

√
2
)

+
1
2

√
2.

Exam problem 25

(a) We know that At has an inverse if and only if |At| �= 0. Expansion along the
first row yields

|At| = 1
∣∣∣∣ 1 t
1 1

∣∣∣∣− 0 + t

∣∣∣∣ 2 1
0 1

∣∣∣∣ = 1 · (1− t) + t · 2 = 1 + t,

so At has an inverse if and only if t �= −1.
Direct calculation gives x + y = z.

BAt =

(
1 0 0
0 0 1
0 1 0

)(
1 0 t
2 1 t
0 1 1

)
=

(
1 0 t
0 1 1
2 1 t

)
, I − BAt =

(
0 0 −t
0 0 −1

−2 −1 1 − t

)
.

It is easy to see that |I−BAt| = 0 for all t, so I−BAt does not have an inverse
for any value of t.

(b) We simply solve the matrix equation with respect to X:

B + XA−1
1 = A−1

1 ⇐⇒ (B + XA−1
1 )A1 = A−1

1 A1

⇐⇒ BA1 + X = I

⇐⇒ X = I−BA1 =

⎛
⎝ 0 0 −1

0 0 −1
−2 −1 0

⎞
⎠

Exam problem 39

(a) The stationary points (x, y) for f are the solutions of the equations

f ′
1(x, y) =

1
x + y

− 2x + 1 = 0 ⇐⇒ 1
x + y

= 2x− 1(1)

f ′
2(x, y) =

1
x + y

− 2y = 0 ⇐⇒ 1
x + y

= 2y(2)

We see that we must have 2y = 2x− 1, so

(3) y = x− 1
2

.
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If we substitute this expression for y in (1) or (2), we get the equation

1
2x− 1

2

= 2x− 1.

Further,

1 = (2x− 1
2
)(2x− 1) = 4x2 − x− 2x +

1
2
,

that is,

4x2 − 3x− 1
2

= 0.

The roots of this quadratic equation are

(4) x =
3±

√
9− 4 · 4(− 1

2 )

8
=

3±√17
8

.

The domain of f is given as that part of the xy-plane where x and y are positive,
so only the + sign can be used in (4). If we then use equation (3) to determine y,
we find that f has only one stationary point, namely

(x0, y0) =
(3 +

√
17

8
,

√
17− 1

8

)
.

(b) The only stationary point for f is the point (x0, y0) that we found in part
(a). This is then the only possible extreme point for f . The second-order partial
derivatives of f are

f ′′
11(x, y) = − 1

(x + y)2
− 2 = f ′′

22(x, y), f ′′
12(x, y) = − 1

(x + y)2
.

This yields

f ′′
11f

′′
22 − (f ′′

12)
2 = · · · = 4

(x + y)2
+ 4 > 0

for all (x, y) in the domain of f . Since f ′′
11 < 0 and f ′′

22 < 0 everywhere, it follows
from Theorem 13.1.2 in EMEA (13.1.1 in MA I) that (x0, y0) is a global maximum
point for f .

Exam problem 42

(a) An elementary row operation followed by expansion along the second row
gives

|At| =
∣∣∣∣∣∣
t 1 1
t 2 1
4 t 2

∣∣∣∣∣∣
−1
← =

∣∣∣∣∣∣
t 1 1
0 1 0
4 t 2

∣∣∣∣∣∣ = −0 + 1 ·
∣∣∣∣ t 1
4 2

∣∣∣∣− 0 = 2t− 4.

At has an inverse ⇐⇒ |At| �= 0 ⇐⇒ t �= 2.
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(b) Direct calculation shows that

A1 · 12

⎛
⎝−3 1 1
−2 2 0

7 −3 −1

⎞
⎠ =

1
2

⎛
⎝ 1 1 1

1 2 1
4 1 2

⎞
⎠
⎛
⎝−3 1 1
−2 2 0

7 −3 −1

⎞
⎠ = I3.

(c) The system can be written as⎛
⎝ 1 1 1

1 2 1
4 1 2

⎞
⎠
⎛
⎝x

y
z

⎞
⎠ =

⎛
⎝ 2

1
0

⎞
⎠ , that is, A1

⎛
⎝x

y
z

⎞
⎠ =

⎛
⎝ 2

1
0

⎞
⎠ .

Hence, ⎛
⎝x

y
z

⎞
⎠ = A−1

⎛
⎝ 2

1
0

⎞
⎠ =

1
2

⎛
⎝−3 1 1
−2 2 0

7 −3 −1

⎞
⎠
⎛
⎝ 2

1
0

⎞
⎠ =

⎛
⎝−5/2
−1

11/2

⎞
⎠ .

Exam problem 70

(a) We have

f(x, y) = (x2 + y2)(xy + 1) = x3y + xy3 + x2 + y2.

The first and second order partial derivatives of f are

f ′
1(x, y) = 3x2y + y3 + 2x, f ′

2(x, y) = x3 + 3xy2 + 2y,

f ′′
11(x, y) = 6xy + 2, f ′′

12(x, y) = 3x2 + 3y2, f ′′
22(x, y) = 6xy + 2.

(b) Stationary points are where both f ′
1 and f ′

2 are 0. It is easy to see that

(∗) f ′
1(x, y) = 0

f ′
2(x, y) = 0

}
⇐⇒

{
y3 = −x(2 + 3xy)

x3 = −y(2 + 3xy)

If we multiply the last pair of equations by y and x, respectively, we get

(∗∗) y4 = −xy(2 + 3xy) = x4,

which gives y2 = x2, and consequently y = ±x. It is clear that (x, y) = (0, 0) is
one solution of the equations (∗). Are there any other stationary points? If so, we
must have both x �= 0 and y �= 0.

Suppose first that y = x �= 0. Equation (∗∗) then yields

x4 = −x2(2 + 3x2) < 0,

But that is impossible. We are left with the possibility y = −x �= 0, and we get

x4 = x2(2− 3x2) ⇐⇒ x2 = 2− 3x2 ⇐⇒ x2 = 1/2

⇐⇒ x = ±1
2

√
2,

5
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which yields the two stationary points (1
2

√
2,− 1

2

√
2 ) and (− 1

2

√
2, 1

2

√
2 ).

In order to classify the stationary points (as local maximum points, local
minimum points, or saddle points) we use the second-derivative test and calculate
A = f ′′

11(x, y), B = f ′′
12(x, y), and C = f ′′

22(x, y) at each of the three stationary
points. That gives the results

(x, y) A B C AC −B2 Result

(0, 0) 2 0 2 4 Local min. point

( 1
2

√
2,− 1

2

√
2 ) −1 3 −1 −8 Saddle point

(− 1
2

√
2, 1

2

√
2 ) −1 3 −1 −8 Saddle point

(c) The extreme value theorem guarantees that f attains a maximum over S. A
maximum point for f over S is either a stationary point for f in the interior of S
or a boundary point of S. For every a �= 0 we have f(a, 0) = a2 > f(0, 0) = 0, and
therefore (0, 0) cannot be a maximum point. The other two stationary points of
f lie in the interior of S if a is large enough, but then they cannot be maximum
points because they are saddle points for f .

Hence, the maximum point or points must lie on the boundary of S, i.e. on
the circle x2 + y2 = a2. Along this curve we have f(x, y) = a2(xy + 1), and so we
have the following problem:

maximize a2(xy + 1) subject to x2 + y2 = a2.

We use Lagrange’s method with the Lagrangian

L(x, y) = a2(xy + 1)− λ(x2 + y2 − a2).

The first-order conditions become

(L′
1(x, y) =) a2y − 2λx = 0

(L′
2(x, y) =) a2x− 2λy = 0

(constraint:) x2 + y2 = a2

We see that we must have x �= 0 and y �= 0, and so we get

λ =
a2y

2x
=

a2x

2y
,

which gives y2 = x2, that is, y = ±x.
Since x2 +y2 = a2, we now get 2x2 = a2, so x = ±a

√
2/2, and there is a total

of 4 points that satisfy the first-order conditions, namely(
a
√

2
2

,
a
√

2
2

)
,

(
a
√

2
2

,−a
√

2
2

)
,

(
−a
√

2
2

,
a
√

2
2

)
,

(
−a
√

2
2

,−a
√

2
2

)
.
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We calculate the values of f at each of these points and find that the maximum
value is fmax = a2(1 + a2/2), which is attained at the first and the last point.

(The other two points give the function value a2(1−a2/2), and are minimum
points for f along the circle. They will be minimum points for f over all of S if
and only if a ≥ √2 .)
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