ECON3120/4120 Mathematics 2, spring 2009

Problems for Seminar 1, 26-30 January 2009

1 Consider the function f defined by

$$f(x) = \frac{3-x}{3x-3}$$

- (a) Where is f(x) defined? Calculate f(x) for x = -3, x = -1/2, x = 1/4, x = 3/2, x = 3, and x = 9.
- (b) Where is $f(x) \le 0$? Where is $f(x) \le 1$?
- (c) Draw the graph of f and see if your answers to (b) are confirmed.
- (d) Define $g(x) = \ln[f(x)]$. Where is g(x) defined? Where is g(x) > 0?

2 Use l'Hôpital's rule (or other methods) to find the limits:

(a)
$$\lim_{x \to 3} \frac{3x^2 - 27}{x - 3}$$
 (b) $\lim_{x \to 0} \frac{e^{-3x} - e^{-2x} + x}{x^2}$ (c) $\lim_{x \to \infty} \left(\sqrt{x^2 + \frac{1}{2}x} - x\right)$

- **3** (a) The equation $e^L + KL = Ke^K$ defines L as a differentiable function of K. Find an expression for dL/dK.
 - (b) If z = F(u, v, w) and u = f(x, y), $v = e^{-x}$, and $w = \ln y$, find an expression for $\partial z/\partial x$ and $\partial z/\partial y$.

4 EMEA: 7.10.1 = MA I: 6.6.1

5 Exam problem 28:

The function g is given by $g(x) = 2x - ae^{-x}(1 + x^2)$, where a is a positive constant.

- (a) Determine where the function g is convex.
- (b) Find $\lim_{x\to\infty} g(x)$. Show that g(x) = 0 has exactly one solution, x_0 , and that $x_0 > 0$.
- (c) Show that $x_0 < a/2$. (*Hint:* Show that g'(x) > 2 for $x \neq 1$.)
- (d) Define the function f by $f(x) = ae^{-x} + \ln(1+x^2)$. Show that the point x_0 that you found in (b) is a global minimum point of f.
- (e) The point x_0 defined by the equation $g(x_0) = 0$ depends on a. Find an expression for dx_0/da .
- (f) Compute $\lim_{a \to 0^+} (x_0/a)$.

(*Note:* The Norwegian version of the exam problem collection is for sale in "Kopiutsalget" in the Akademika bookstore. If you cannot read Norwegian, please contact Arne Strøm for an English version.)