ECON3120/4120 Mathematics 2, spring 2009

Problems for Seminar 1, 26-30 January 2009
1 Consider the function f defined by

$$
f(x)=\frac{3-x}{3 x-3}
$$

(a) Where is $f(x)$ defined? Calculate $f(x)$ for $x=-3, x=-1 / 2, x=1 / 4$, $x=3 / 2, x=3$, and $x=9$.
(b) Where is $f(x) \leq 0$? Where is $f(x) \leq 1$?
(c) Draw the graph of f and see if your answers to (b) are confirmed.
(d) Define $g(x)=\ln [f(x)]$. Where is $g(x)$ defined? Where is $g(x)>0$?

2 Use l'Hôpital's rule (or other methods) to find the limits:
(a) $\lim _{x \rightarrow 3} \frac{3 x^{2}-27}{x-3}$
(b) $\lim _{x \rightarrow 0} \frac{e^{-3 x}-e^{-2 x}+x}{x^{2}}$
(c) $\lim _{x \rightarrow \infty}\left(\sqrt{x^{2}+\frac{1}{2} x}-x\right)$

3 (a) The equation $e^{L}+K L=K e^{K}$ defines L as a differentiable function of K. Find an expression for $d L / d K$.
(b) If $z=F(u, v, w)$ and $u=f(x, y), v=e^{-x}$, and $w=\ln y$, find an expression for $\partial z / \partial x$ and $\partial z / \partial y$.

4 EMEA: $7.10 .1=$ MA I: 6.6 .1

5 Exam problem 28:

The function g is given by $g(x)=2 x-a e^{-x}\left(1+x^{2}\right)$, where a is a positive constant.
(a) Determine where the function g is convex.
(b) Find $\lim _{x \rightarrow \infty} g(x)$. Show that $g(x)=0$ has exactly one solution, x_{0}, and that $x_{0}>0$.
(c) Show that $x_{0}<a / 2$. (Hint: Show that $g^{\prime}(x)>2$ for $x \neq 1$.)
(d) Define the function f by $f(x)=a e^{-x}+\ln \left(1+x^{2}\right)$. Show that the point x_{0} that you found in (b) is a global minimum point of f.
(e) The point x_{0} defined by the equation $g\left(x_{0}\right)=0$ depends on a. Find an expression for $d x_{0} / d a$.
(f) Compute $\lim _{a \rightarrow 0^{+}}\left(x_{0} / a\right)$.
(Note: The Norwegian version of the exam problem collection is for sale in "Kopiutsalget" in the Akademika bookstore. If you cannot read Norwegian, please contact Arne Strøm for an English version.)

