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Exam problem 11

(a) It is clear that lim f(x) = 0 — 0 = 0, but it is not quite so simple to see
Tr—r 00
what happens as x tends to 0, because then each of the two fractions tends to oco.

However, if we pull them together into a single fraction, it turns out that we get
an expression that we can handle by means of I’'Hopital’s rule:

et —1—x “p» e —1 “Q»

z—0 z—0 m(ex — 1) 0 x—0e% — 1 + xe® 0

It is best to differentiate the two terms of f separately before pulling them together
into one fraction:
1 e’ e” — (" —1)2  g(x)

fl@) ===+ -

2 (e® —1)2 r2(er —1)2  a2(e® —1)2

where g(x) is the function we are going to investigate in part (b).

(b) We have

g (x) = 2ze” + x%e” — 2(e® — 1)e” = e”h(x),
where
h(z) = 2z + 2% — 2% + 2.

The point of this factorization is that ¢’(z) has the same sign as h(x) and h is
a simpler function than ¢’. Now, h(0) = 0, so if we can show that h is strictly
decreasing in [0, 00) it will immediately follow that h(z) < 0 for all = > 0.

Differentiation gives h/(x) = 2 4+ 2z — 2¢”, and we see that A'(0) = 0. What
about the sign of A/(x) if z > 0?7 Another differentiation yields h”(z) = 2 — 2¢*,
and it is clear that A" (x) < 0 when & > 0. This implies that b’ is strictly decreasing
in [0, 00). Hence, h/(x) < h'(0) = 0 for > 0. It follows that h itself is also strictly
decreasing in [0, 00).

(If we look a little more at h”, we also see that h”(xz) > 0 for x < 0, so b’ is
strictly increasing in (—o00,0]. All in all it follows that A/(x) < h'(0) = 0 for all
x # 0. Hence, h is actually strictly decreasing over all of (—o0, 00).)

Now that we have shown that h is strictly decreasing in [0, 00), it follows that
h(z) < 0 for all z > 0, and so ¢'(z) < 0 as well.
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Thus, ¢ is strictly decreasing over [0,00), and for all x > 0 we then have
g(x) < g(0) =0.
Finally, f'(z) = I g forall x> 0, and therefore f is strictly
ze(etr —

decreasing over [0, 00).
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Exam problem 11 (c).

Exam problem 22

(a) U'(x) = ade % —bBe® U"(x) = —a?Ae™ % — b?Beb®,
The function U is differentiable everywhere, so any extreme point must be a
stationary point.

U'(z) =0 <= bBe" = alde ™ <= In(bBeb™) = In(ade™ %)
<= In(bB) + bz = In(aA) — ax

A

<= (a+b)x =In(aA) —In(bB) = ln<a—)

bB
— m:aiblngj—g) =x".

Hence z* is the only stationary point of U. Moreover, U"”(z) < 0 for all x, so
U'(z) is strictly decreasing everywhere. It follows that U’(z) > 0 for x < z* and
U'(z) < 0 for x > x*. By the first-derivative test, * is a (global) maximum point
for U. (See p. 273 in EMEA, p. 292 in MA 1.)

(b) It was shown in (a) that U"”(z) < 0 for all . Hence U is concave everywhere.
The diagram shows the graph of U together with the straight line x = x* when
A=06,B=04a=1b=0.6, and z* = (In2.5)/1.6 ~ 0.5727.

(c) The standard rules for powers yield
U(z) = —Ae™™ — Beb® — — Ae=0" ¢=alz—a") _ peba’ gb(z—a").
It remains to find a C such that
(1) Ae™®" =(C/a and (2) Be"™ =C/b.
2
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Exam problem 22

Equation (1) gives C' = aAe= % . We know from part (a) that U’(z*) = 0, and
so aAe™*" = bBeb® . Hence C/b = aAe /b = Beb™ | i.e. equation (2) is also
satisfied.

The graph of U is symmetric about the vertical line x = x* if and only if
U(x* +1t) =U(x* —t) for all t. From the formula we have just shown, it follows
that if a = b, then

C
U(z" +1) = —Ze_“t — —e" = —— (e + ),

and so U(z* +1t) =U(z* + (—t)) = U(z* — t).
(d) The formula for U(zx) in part (c) gives

U/(IL') _ Ce—a(m—x*) _ Ceb(m—m*)
U"(z) = —Cae~*"=%") — Cheb@=2")
Hence,
c 1 1
U = =5 = =C(G+3):
U'(z*) =0 (we already found that in part (a)),
U’ (z*) = -C(a+D).

The quadratic approximation to U(z) around z* is therefore
1

Uz*) + U (z")(z — 2*) + %U”(m*)(m )= —0(% + 5) - %C’(a+b)(:p —2")2,

Exam problem 26
a) f(x) is defined if and only if 4 — 22 > 0, so D = [-2,2]. We have
f

F@) + f-2) = 30V — 2% + (-2’ A= (o)
_ %xsm_ gxsm: 0.
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Hence, f(—x) = —f(x) for all z, and so f is an odd function. Geometrically this
means that if (z,y) lies on the graph of f, then so does (—x, —y). Thus the graph
is symmetric about the origin; if you rotate the graph 180° about the origin it
will exactly cover the original graph. (An even function is a function h for which
h(—z) = h(x) for all z.)

1 1 1 2t
/ — 2 4 — 2 B -9 — 2 4 — 2 - =
(b) fl(x)==x x +3x 2\/m( r)=z"V4d—zx 3 i

32?4 —2?) —at  42?(3—a?)

3vV4 — a3 3V4—g2

We note that
fl(z) <0 if3<a? <4, ie if V3 < |z| <2,

f(x) >0 if 0<2? <3 ie if 0< |z < V3.

It follows that f is (strictly) decreasing in [—2, —+/3], (strictly) increasing in
[—v/3,v/3], and (strictly) decreasing again in [v/3,2]. See the graph.
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Exam problem 26 (c). Exam problem 26 (d).

(d) Since f is strictly increasing in [0,v/3], it has an inverse function g defined
on [£(0), f(v/3)] = [0,4/3]. Because g is the inverse of f we have f(g(z)) = z for
all  in the domain D, = [0,1/3] of g. For all x in (0,v/3) we then have

d
— =1.
2 fota)
By the chain rule, we get f/(g(z))g'(z) = 1. In particular, for = 11/3 we get
F'(9(3V3))g' (5V3) = 1.
Finally, because f(1) = /3, we have g(1v/3) =1, and so

=3
1 1 3v/3

FO) " 8/3v3) 8

g(3V3) =

4
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The figure shows the graphs of f and g. Note that in this part of the problem we
only consider the restriction of f to the interval [0,v/3]. The corresponding graph
of f is represented by a solid curve. The dashed parts correspond to values of x
outside the interval in question.

That the domain of g is the same as the domain of (the restricted) f, is a
mere accident caused by the fact that f(0) =0 and f(%\/g) = %\/5

Exam problem 32

(xe®®) - (x+1) — ze®* - (x + 1)

(a) f(x) = (z +1)2
eI+ 22) (x4 1) —we ¥ (227 + 2z +1)
B (x+1)2 N (x+1)2

The domain of f is Dy = R\ {—1} = (—o00,—1) U (—1,00). The function is dif-
ferentiable throughout its domain, so any local extreme points must be stationary
points of f. The equation 222 + 2x + 1 = 0 has no real roots, and therefore f has
no local extreme points. (If we try the formula for solving quadratic equations,
—1+v4-38 )
1 .
We also have 222 + 2x + 1 = 22 + (z + 1)? > 0 for all =, so f'(z) > 0 for all
x # —1. This shows that f is strictly increasing in each of the intervals (—oo, —1)
and (—1, 00).

we get x =

(b) It is clear that lim,_, _; 7e*® = —e~2? < 0. When investigating the right-hand
limit lim,_,_1y+ f(x), we need to determine what happens when z is close to but

greater than —1. In particular, x + 1 will then be positive and close to 0. It follows
that

m  f(e)= lm 2
im z)= lim = —
z—(—1)* z—(—1)* T + 1
In a similar fashion we find that
xe2w
i = I =
aﬁ»%gﬁ)—‘f(x) x—»%gﬁ)— r+1 ’

since x + 1 is negative all the time as x tends to —1 from the left.

Further,
. . . 2z _ —
and
. T 2 _
Jim #(@) = Jim (S ) = oo

since lim, oo x/(x + 1) =limy oo z/(z + 1) = 1.
5
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(¢c) The second derivative of f is

d (62"”(2302 + 2z + 1))

f(x)

T dr (x+1)2
[2eF(22% 4+ 22 4+ 1) 4+ ¥ (4x 4 2)] (2 + 1) — ¥ (227 + 22 4+ 1)2(z + 1)
B (z + 1)1
e?* (423 + 822 + 8z + 2) e®
== 3 = 3g(x)7
(x+1) (x+1)

where g(z) = 423 + 822 + 8z + 2. Then f’(z) =0 <= g(x) = 0.

Since g(—1) = —1 < 0 and g(0) = 2 > 0, there is a point zy in (—3,0)
such that g(zg) = 0. Moreover, ¢'(z) = 1222 + 162 +8 = 422 + 8(z +1)2 > 0
for all . This shows that ¢ is strictly increasing over the entire real line, and
therefore g(z) < 0 for < z and g(z) > 0 for z > xy. Hence z( is the only zero
of g.

Since f”(x) changes sign around = = xg, xo must be an inflection point of f,
and since xq is the only zero of f”, there are no other inflection points.

(d) The function f is convex in intervals where f” > 0, and concave in intervals
where f” < 0. We know that —1 < zg and that

(:1:+1)3{

<0 ifx<-—1, (){<O if x < xq,
>0 ifz>-1, T\ s0 ifz> .

A sign diagram for f”(x) = e2>*g(x)/(z + 1)® then shows that f is convex over
(—o0, —1), concave over (—1,zp] and convex again over [zg, 00).
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14
21
31
era:
Exam problem 32 (d). The graph of f(x) = 1
x

Exam problem 105

(a) Implicit differentiation with respect to x yields
20y° +2%3y"y +y'e " + (y+ 1)(—e7) =1
6
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Letting =0, y = 1, we get
v +2(-1)=1 < ¢ =3.

Alternatively we can use formula (1) on page 422 in EMEA (page 424 in MA 1),
which yields

, o 2oyt —(y+De* -1 —2-1 _ 3
3x2y2 + e * 1 '
Y
34
1
/
2+ ///
/I
1 /\
1
/
! » T
-2 -1 / 1 2
/
1
14

Exam problem 105

The figure shows the graph of y as a function of z, together with the tangent to
the graph at (0,1).

(b) The curve intersects the z-axis when y = 0, that is, when
et =x+2 (o)

Let p(z) = e ® — 2 —2. Then ¢'(x) = —e~* — 1 < 0, for all z, so p(z) is strictly
decreasing. We have p(—1) =e —1 > 0 and ¢(0) = —1. Hence equation (o) has
a unique solution (which lies in the interval (—1,0)). This shows that the curve
given by (%) in the problem intersects the x-axis at exactly one place.
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