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Exam problem 11

(a) It is clear that lim
x→∞ f(x) = 0 − 0 = 0, but it is not quite so simple to see

what happens as x tends to 0, because then each of the two fractions tends to ∞.
However, if we pull them together into a single fraction, it turns out that we get
an expression that we can handle by means of l’Hôpital’s rule:

lim
x→0

f(x) = lim
x→0

ex − 1 − x

x(ex − 1)
=

“0
0
”

= lim
x→0

ex − 1
ex − 1 + xex

=
“0
0
”

= lim
x→0

ex

ex + ex + xex
=

1
2

.

It is best to differentiate the two terms of f separately before pulling them together
into one fraction:

f ′(x) = − 1
x2 +

ex

(ex − 1)2
=

x2ex − (ex − 1)2

x2(ex − 1)2
=

g(x)
x2(ex − 1)2

,

where g(x) is the function we are going to investigate in part (b).

(b) We have

g′(x) = 2xex + x2ex − 2(ex − 1)ex = exh(x),
where

h(x) = 2x + x2 − 2ex + 2.

The point of this factorization is that g′(x) has the same sign as h(x) and h is
a simpler function than g′. Now, h(0) = 0, so if we can show that h is strictly
decreasing in [0,∞) it will immediately follow that h(x) < 0 for all x > 0.

Differentiation gives h′(x) = 2 + 2x − 2ex, and we see that h′(0) = 0. What
about the sign of h′(x) if x > 0? Another differentiation yields h′′(x) = 2 − 2ex,
and it is clear that h′′(x) < 0 when x > 0. This implies that h′ is strictly decreasing
in [0,∞). Hence, h′(x) < h′(0) = 0 for x > 0. It follows that h itself is also strictly
decreasing in [0,∞).

(If we look a little more at h′′, we also see that h′′(x) > 0 for x < 0, so h′ is
strictly increasing in (−∞, 0]. All in all it follows that h′(x) < h′(0) = 0 for all
x �= 0. Hence, h is actually strictly decreasing over all of (−∞,∞).)

Now that we have shown that h is strictly decreasing in [0,∞), it follows that
h(x) < 0 for all x > 0, and so g′(x) < 0 as well.
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Thus, g is strictly decreasing over [0,∞), and for all x > 0 we then have
g(x) < g(0) = 0.

Finally, f ′(x) =
g(x)

x2(ex − 1)2
< 0 for all x > 0, and therefore f is strictly

decreasing over [0,∞).
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Exam problem 11 (c).

Exam problem 22

(a) U ′(x) = aAe−ax − bBebx, U ′′(x) = −a2Ae−ax − b2Bebx.
The function U is differentiable everywhere, so any extreme point must be a

stationary point.

U ′(x) = 0 ⇐⇒ bBebx = aAe−ax ⇐⇒ ln(bBebx) = ln(aAe−ax)
⇐⇒ ln(bB) + bx = ln(aA) − ax

⇐⇒ (a + b)x = ln(aA) − ln(bB) = ln
(aA

bB

)

⇐⇒ x =
1

a + b
ln

(aA

bB

)
= x∗.

Hence x∗ is the only stationary point of U . Moreover, U ′′(x) < 0 for all x, so
U ′(x) is strictly decreasing everywhere. It follows that U ′(x) > 0 for x < x∗ and
U ′(x) < 0 for x > x∗. By the first-derivative test, x∗ is a (global) maximum point
for U . (See p. 273 in EMEA, p. 292 in MA I.)

(b) It was shown in (a) that U ′′(x) < 0 for all x. Hence U is concave everywhere.
The diagram shows the graph of U together with the straight line x = x∗ when
A = 0.6, B = 0.4, a = 1, b = 0.6, and x∗ = (ln 2.5)/1.6 ≈ 0.5727.

(c) The standard rules for powers yield

U(x) = −Ae−ax − Bebx = −Ae−ax∗
e−a(x−x∗) − Bebx∗

eb(x−x∗).

It remains to find a C such that

(1) Ae−ax∗
= C/a and (2) Bebx∗

= C/b.
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Exam problem 22

Equation (1) gives C = aAe−ax∗
. We know from part (a) that U ′(x∗) = 0, and

so aAe−ax∗
= bBebx∗

. Hence C/b = aAe−ax∗
/b = Bebx∗

, i.e. equation (2) is also
satisfied.

The graph of U is symmetric about the vertical line x = x∗ if and only if
U(x∗ + t) = U(x∗ − t) for all t. From the formula we have just shown, it follows
that if a = b, then

U(x∗ + t) = −C

a
e−at − C

b
ebt = −C

a
(e−at + eat),

and so U(x∗ + t) = U(x∗ + (−t)) = U(x∗ − t).

(d) The formula for U(x) in part (c) gives

U ′(x) = Ce−a(x−x∗) − Ceb(x−x∗)

U ′′(x) = −Cae−a(x−x∗) − Cbeb(x−x∗)

Hence,

U(x∗) = −C

a
− C

b
= −C

(1
a

+
1
b

)
,

U ′(x∗) = 0 (we already found that in part (a)),
U ′′(x∗) = −C(a + b).

The quadratic approximation to U(x) around x∗ is therefore

U(x∗) + U ′(x∗)(x − x∗) +
1
2
U ′′(x∗)(x − x∗)2 = −C

(1
a

+
1
b

)
− 1

2
C(a + b)(x − x∗)2.

Exam problem 26

(a) f(x) is defined if and only if 4 − x2 ≥ 0, so Df = [−2, 2]. We have

f(x) + f(−x) =
1
3
x3

√
4 − x2 +

1
3
(−x)3

√
4 − (−x)2

=
1
3
x3

√
4 − x2 − 1

3
x3

√
4 − x2 = 0.
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Hence, f(−x) = −f(x) for all x, and so f is an odd function. Geometrically this
means that if (x, y) lies on the graph of f , then so does (−x,−y). Thus the graph
is symmetric about the origin; if you rotate the graph 180◦ about the origin it
will exactly cover the original graph. (An even function is a function h for which
h(−x) = h(x) for all x.)

f ′(x) = x2
√

4 − x2 +
1
3
x3 1

2
√

4 − x2
(−2x) = x2

√
4 − x2 − 1

3
x4

√
4 − x2

(b)

=
3x2(4 − x2) − x4

3
√

4 − x3
=

4x2(3 − x2)
3
√

4 − x2
.

We note that
f ′(x) < 0 if 3 < x2 < 4, i.e. if

√
3 < |x| < 2,

f ′(x) > 0 if 0 < x2 < 3, i.e. if 0 < |x| <
√

3.

Ït follows that f is (strictly) decreasing in [−2,−√
3 ], (strictly) increasing in

[−√
3,

√
3 ], and (strictly) decreasing again in [

√
3, 2]. See the graph.
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Exam problem 26 (c). Exam problem 26 (d).

(d) Since f is strictly increasing in [0,
√

3 ], it has an inverse function g defined
on [f(0), f(

√
3 )] = [0,

√
3 ]. Because g is the inverse of f we have f(g(x)) = x for

all x in the domain Dg = [0,
√

3 ] of g. For all x in (0,
√

3 ) we then have

d

dx
f(g(x)) = 1 .

By the chain rule, we get f ′(g(x))g′(x) = 1. In particular, for x = 1
3

√
3 we get

f ′(g( 1
3

√
3 ))g′( 1

3

√
3) = 1.

Finally, because f(1) = 1
3

√
3, we have g( 1

3

√
3 ) = 1, and so

g′( 1
3

√
3 ) =

1
f ′(1)

=
1

8
/
(3

√
3 )

=
3
√

3
8

.
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The figure shows the graphs of f and g. Note that in this part of the problem we
only consider the restriction of f to the interval [0,

√
3 ]. The corresponding graph

of f is represented by a solid curve. The dashed parts correspond to values of x
outside the interval in question.

That the domain of g is the same as the domain of (the restricted) f , is a
mere accident caused by the fact that f(0) = 0 and f( 1

3

√
3 ) = 1

3

√
3.

Exam problem 32

f ′(x) =
(xe2x)′ · (x + 1) − xe2x · (x + 1)′

(x + 1)2
(a)

=
e2x(1 + 2x)(x + 1) − xe2x

(x + 1)2
=

e2x(2x2 + 2x + 1)
(x + 1)2

.

The domain of f is Df = R � {−1} = (−∞,−1) ∪ (−1,∞). The function is dif-
ferentiable throughout its domain, so any local extreme points must be stationary
points of f . The equation 2x2 + 2x + 1 = 0 has no real roots, and therefore f has
no local extreme points. (If we try the formula for solving quadratic equations,

we get x =
−1 ± √

4 − 8
4

.)

We also have 2x2 + 2x + 1 = x2 + (x + 1)2 > 0 for all x, so f ′(x) > 0 for all
x �= −1. This shows that f is strictly increasing in each of the intervals (−∞,−1)
and (−1,∞).

(b) It is clear that limx→−1 xe2x = −e−2 < 0. When investigating the right-hand
limit limx→(−1)+ f(x), we need to determine what happens when x is close to but
greater than −1. In particular, x+1 will then be positive and close to 0. It follows
that

lim
x→(−1)+

f(x) = lim
x→(−1)+

xe2x

x + 1
= −∞.

In a similar fashion we find that

lim
x→(−1)−

f(x) = lim
x→(−1)−

xe2x

x + 1
= ∞,

since x + 1 is negative all the time as x tends to −1 from the left.
Further,

lim
x→−∞ f(x) = lim

x→−∞

( x

x + 1
· e2x

)
= 1 · 0 = 0

and
lim

x→∞ f(x) = lim
x→∞

( x

x + 1
· e2x

)
= ∞,

since limx→−∞ x/(x + 1) = limx→∞ x/(x + 1) = 1.
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(c) The second derivative of f is

f ′′(x) =
d

dx

(
e2x(2x2 + 2x + 1)

(x + 1)2

)

=

[
2e2x(2x2 + 2x + 1) + e2x(4x + 2)

]
(x + 1)2 − e2x(2x2 + 2x + 1)2(x + 1)

(x + 1)4

= · · · =
e2x(4x3 + 8x2 + 8x + 2)

(x + 1)3
=

e2x

(x + 1)3
g(x),

where g(x) = 4x3 + 8x2 + 8x + 2. Then f ′′(x) = 0 ⇐⇒ g(x) = 0.
Since g(− 1

2 ) = − 1
2 < 0 and g(0) = 2 > 0, there is a point x0 in (− 1

2 , 0)
such that g(x0) = 0. Moreover, g′(x) = 12x2 + 16x + 8 = 4x2 + 8(x + 1)2 > 0
for all x. This shows that g is strictly increasing over the entire real line, and
therefore g(x) < 0 for x < x0 and g(x) > 0 for x > x0. Hence x0 is the only zero
of g.

Since f ′′(x) changes sign around x = x0, x0 must be an inflection point of f ,
and since x0 is the only zero of f ′′, there are no other inflection points.

(d) The function f is convex in intervals where f ′′ ≥ 0, and concave in intervals
where f ′′ ≤ 0. We know that −1 < x0 and that

(x + 1)3
{

< 0 if x < −1,
> 0 if x > −1,

g(x)
{

< 0 if x < x0,
> 0 if x > x0.

A sign diagram for f ′′(x) = e2xg(x)/(x + 1)3 then shows that f is convex over
(−∞,−1), concave over (−1, x0] and convex again over [x0,∞).
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Exam problem 32 (d). The graph of f(x) =
xe2x

x + 1
.

Exam problem 105

(a) Implicit differentiation with respect to x yields

2xy3 + x23y2y′ + y′e−x + (y + 1)(−e−x) = 1

6

Mat2v09sem02svar 30.1.2009 953



Letting x = 0, y = 1, we get

y′ + 2(−1) = 1 ⇐⇒ y′ = 3.

Alternatively we can use formula (1) on page 422 in EMEA (page 424 in MA I),
which yields

y′ = −2xy3 − (y + 1)e−x − 1
3x2y2 + e−x

= −−2 − 1
1

= 3.

y
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Exam problem 105

The figure shows the graph of y as a function of x, together with the tangent to
the graph at (0, 1).

(b) The curve intersects the x-axis when y = 0, that is, when

e−x = x + 2 (◦)

Let ϕ(x) = e−x − x − 2. Then ϕ′(x) = −e−x − 1 < 0, for all x, so ϕ(x) is strictly
decreasing. We have ϕ(−1) = e − 1 > 0 and ϕ(0) = −1. Hence equation (◦) has
a unique solution (which lies in the interval (−1, 0)). This shows that the curve
given by (∗) in the problem intersects the x-axis at exactly one place.
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