ECON3120/4120 Mathematics 2, spring 2009

Problem solutions for Seminar 3, 9-13 February 2009

(For practical reasons some of the solutions may include problem parts that are not on the problem list for this seminar.)

EMEA, 7.5.5 (= MA I, 7.4.5)

We are going to need both y^{\prime} and $y^{\prime \prime}$, so we differentiate implicitly twice in the equation

$$
1+x^{3} y+x=y^{1 / 2}
$$

The first differentiation gives

$$
\begin{equation*}
3 x^{2} y+x^{3} y^{\prime}+1=\frac{1}{2} y^{-1 / 2} y^{\prime} \tag{1}
\end{equation*}
$$

A second differentiation yields

$$
\begin{equation*}
6 x y+3 x^{2} y^{\prime}+3 x^{2} y^{\prime}+x^{3} y^{\prime \prime}=-\frac{1}{4} y^{-3 / 2}\left(y^{\prime}\right)^{2}+\frac{1}{2} y^{-1 / 2} y^{\prime \prime} \tag{2}
\end{equation*}
$$

If we now substitute $x=0$ and $y=1$, we get

$$
\left(1^{\prime}\right) \quad 1=\frac{1}{2} y^{\prime} \quad \text { and } \quad\left(2^{\prime}\right) \quad 0=-\frac{1}{4}\left(y^{\prime}\right)^{2}+\frac{1}{2} y^{\prime \prime}
$$

which implies $y^{\prime}=2$ and $y^{\prime \prime}=\frac{1}{2}\left(y^{\prime}\right)^{2}=2$ (when $x=0$ and $y=1$). The quadratic approximation to $y=y(x)$ is therefore

$$
y(x) \approx y(0)+y^{\prime}(0) x+\frac{1}{2} y^{\prime \prime}(0) x^{2}=1+2 x+x^{2}
$$

Exam problem 63(a)

Implicit differentiation with respect to x in the equation $3 x e^{x y^{2}}-2 y=3 x^{2}+y^{2}$ gives

$$
3 e^{x y^{2}}+3 x e^{x y^{2}}\left(y^{2}+2 x y y^{\prime}\right)-2 y^{\prime}=6 x+2 y y^{\prime}
$$

With $x=1$ and $y=0$, we get

$$
3-2 y^{\prime}(1)=6, \quad \text { which gives } \quad y^{\prime}(1)=-3 / 2
$$

Hence, the slope of the graph at the point $\left(x^{*}, y^{*}\right)=(1,0)$ is $3 / 2$.
The linear approximation to $y(x)$ about this point is therefore

$$
y(x) \approx y(1)+y^{\prime}(1)(x-1)=0+\left(-\frac{3}{2}\right)(x-1)=-\frac{3}{2} x+\frac{3}{2} .
$$

Problem 3

$C(x)=\int\left(x^{2}+x-10\right) d x=\frac{1}{3} x^{3}+\frac{1}{2} x^{2}-10 x+K$, where K is the constant of integration. Since $C(0)=50$, we find that $K=50$, so the cost function is $C(x)=\frac{1}{3} x^{3}+\frac{1}{2} x^{2}-10 x+50$.

Problem 4

It is natural to write the integrand as a polynomial, and then

$$
\begin{aligned}
\int_{0}^{2} 2 x^{2}(2-x)^{2} d x & =\int_{0}^{2} 2 x^{2}\left(4-4 x+x^{2}\right) d x=\int_{0}^{2}\left(2 x^{4}-8 x^{3}+8 x^{2}\right) d x \\
= & \left.\right|_{0} ^{2}\left(\frac{2}{5} x^{5}-2 x^{4}+\frac{8}{3} x^{3}\right)=\left(\frac{64}{5}-32+\frac{64}{3}\right)-0=\frac{32}{15} \approx 2.133 .
\end{aligned}
$$

The figure shows the graph of $f(x)=2 x^{2}(2-x)^{2}$ over the interval $[0,2]$. The highest point on the graph is $B=(1,2)$. The area between the graph and the x-axis is $\int_{0}^{2} 2 x^{2}(2-x)^{2} d x=32 / 15$. We can see from the figure that this area really is just a little bit greater than the area of the triangle $O A B$, which is 2 .

Figure for Problem 4

EMEA 9.5.1 (= MA I, 10.6.1)

(a)

$$
\begin{aligned}
& =-x e^{-x}+\int e^{-x} d x=-x e^{-x}-e^{-x}+C
\end{aligned}
$$

(b)

$$
\int 3 x e^{4 x} d x=3 x \cdot \frac{1}{4} e^{4 x}-\int 3 \cdot \frac{1}{4} e^{4 x} d x=\frac{3}{4} x e^{4 x}-\frac{3}{16} e^{4 x}+C
$$

(c) $\quad \int\left(1+x^{2}\right) e^{-x} d x=\left(1+x^{2}\right)\left(-e^{-x}\right)-\int 2 x\left(-e^{-x}\right) d x$

$$
\begin{aligned}
& =-\left(1+x^{2}\right) e^{-x}+2 \int x e^{-x} d x \\
& =-\left(1+x^{2}\right) e^{-x}-2 x e^{-x}-2 e^{-x}+C \quad \text { (use (a)!) } \\
& =-\left(x^{2}+2 x+3\right) e^{-x}+C
\end{aligned}
$$

(d)

EMEA 9.6.2 (= MA I, 10.7.2)

(b) With $u=g(x)=x^{3}+2$ we get $d u=g^{\prime}(x) d x=3 x^{2} d x$ and

$$
\int x^{2} e^{x^{3}+2} d x=\int e^{g(x)} \frac{1}{3} g^{\prime}(x) d x=\int \frac{1}{3} e^{u} d u=\frac{1}{3} e^{u}+C=\frac{e^{x^{3}+2}}{3}+C .
$$

(c) As a first attempt we could use the substitution $u=g(x)=x+2$, which gives $d u=d x$ and

$$
\int \frac{\ln (x+2)}{2 x+4} d x=\int \frac{\ln u}{2 u} d u
$$

This does not look very much simpler than the original integral, but if we notice that $\frac{\ln u}{u}=\ln u \cdot \frac{1}{u}=\ln u \cdot \frac{d}{d u} \ln u$, then we can see that $v=\ln u$ yields $d v=\frac{1}{u} d u$ and

$$
\int \frac{\ln u}{2 u} d u=\int \frac{1}{2} v d v=\frac{1}{4} v^{2}+C=\frac{1}{4}(\ln u)^{2}+C=\frac{1}{4}(\ln (x+2))^{2}+C .
$$

With a little experience we would have noticed straight away that

$$
\frac{\ln (x+2)}{2 x+4}=\frac{\ln (x+2)}{2(x+2)}=\frac{1}{2} \ln (x+2) \frac{d}{d x} \ln (x+2),
$$

and this immediately suggests the substitution $v=\ln (x+2)$.

Problem 7

(a) $f^{\prime}(x)=(\ln x)^{2}+x\left(2 \ln x \cdot \frac{1}{x}\right)=\ln x(\ln x+2), \quad f^{\prime \prime}(x)=\frac{2}{x}(\ln x+1)$
(b) $f(x)$ is increasing if and only if $f^{\prime}(x)=\ln x(\ln x+2) \geq 0$. Note that $f^{\prime}(x)=0$ when $x=1$ and when $\ln x=-2$, i.e. $x=e^{-2}$. A sign diagram shows that $f^{\prime}(x) \geq 0$ (and $f(x)$ is increasing) if and only if $0<x \leq e^{-2}$ or $x \geq 1$. The function is decreasing in $\left[e^{-2}, 1\right] . x=1$ is a (global) minimum point since $f(x) \geq 0$ and $f(1)=0$. Since $f(x) \rightarrow \infty$ as $x \rightarrow \infty$, there is no (global) maximum.
(c) Integration by parts, with $g^{\prime}(x)=x$ and $f(x)=(\ln x)^{2}$, gives

$$
\int x(\ln x)^{2} d x=\frac{1}{2} x^{2}(\ln x)^{2}-\int \frac{1}{2} x^{2} 2(\ln x) \frac{1}{x} d x=\frac{1}{2} x^{2}(\ln x)^{2}-\int x \ln x d x
$$

Using the result in problem 2, we get

$$
\int x(\ln x)^{2} d x=\frac{1}{2} x^{2}(\ln x)^{2}-\frac{1}{2} x^{2} \ln x+\frac{1}{4} x^{2}+C .
$$

Problem 8

You need not look for any smart trick in order to solve the integral on the left. All you have to do is show that the derivative of the right-hand side is $\sqrt{x^{2}+3}$. That is pretty straightforward:

$$
\begin{aligned}
\frac{d}{d x} & \left(\frac{1}{2} x \sqrt{x^{2}+3}+\frac{3}{2} \ln \left(x+\sqrt{x^{2}+3}\right)+C\right) \\
& =\frac{1}{2} \sqrt{x^{2}+3}+\frac{1}{2} x \frac{x}{\sqrt{x^{2}+3}}+\frac{3}{2} \frac{1}{x+\sqrt{x^{2}+3}}\left(1+\frac{x}{\sqrt{x^{2}+3}}\right) \\
& =\frac{1}{2} \sqrt{x^{2}+3}+\frac{x^{2}}{2 \sqrt{x^{2}+3}}+\frac{3}{2} \frac{1}{x+\sqrt{x^{2}+3}} \frac{x+\sqrt{x^{2}+3}}{\sqrt{x^{2}+3}} \\
& =\frac{1}{2} \sqrt{x^{2}+3}+\frac{x^{2}+3}{2 \sqrt{x^{2}+3}}=\frac{1}{2} \sqrt{x^{2}+3}+\frac{1}{2} \sqrt{x^{2}+3}=\sqrt{x^{2}+3}
\end{aligned}
$$

For those of you who want to know how to find the integral: Try the substitution $u=x+\sqrt{x^{2}+3}$. That will give you

$$
(u-x)^{2}=x^{2}+3 \Longleftrightarrow u^{2}-2 u x=3 \Longleftrightarrow x=\frac{u^{2}-3}{2 u}=\frac{u}{2}-\frac{3}{2} \cdot \frac{1}{u}
$$

so

$$
d x=\left(\frac{1}{2}+\frac{3}{2} \cdot \frac{1}{u^{2}}\right) d u=\frac{u^{2}+3}{2 u^{2}} d u
$$

Also,

$$
\sqrt{x^{2}+3}=u-x=\frac{u}{2}+\frac{3}{2} \cdot \frac{1}{u}=\frac{u^{2}+3}{2 u}
$$

Hence,

$$
\int \sqrt{x^{2}+3} d x=\int \frac{u^{2}+3}{2 u} \frac{u^{2}+3}{2 u^{2}} d u=\int \frac{u^{4}+6 u^{2}+9}{4 u^{3}} d u
$$

This integral is easy to calculate if you write the integrand as a sum of simple fractions. Afterwards you have to substitute $x+\sqrt{x^{2}+3}$ for u. If you simplify the result, you will end up with the expression on the right-hand side in the problem.
(Another possibility is to substitute $x=\sqrt{3} \sinh t$, where $\sinh t=\frac{1}{2}\left(e^{t}-e^{-t}\right)$ the hyperbolic sine function, sinus hyperbolicus, cf. Problem 10.8.9 in MA I.)

