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(For practical reasons some of the solutions may include problem parts that are
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EMEA, 7.5.5 (= MA I, 7.4.5)

We are going to need both y′ and y′′, so we differentiate implicitly twice in the
equation

1 + x3y + x = y1/2.

The first differentiation gives

3x2y + x3y′ + 1 =
1
2
y−1/2y′. (1)

A second differentiation yields

6xy + 3x2y′ + 3x2y′ + x3y′′ = −1
4
y−3/2(y′)2 +

1
2
y−1/2y′′. (2)

If we now substitute x = 0 and y = 1, we get

(1′) 1 =
1
2
y′ and (2′) 0 = −1

4
(y′)2 +

1
2
y′′,

which implies y′ = 2 and y′′ = 1
2 (y′)2 = 2 (when x = 0 and y = 1). The quadratic

approximation to y = y(x) is therefore

y(x) ≈ y(0) + y′(0)x +
1
2
y′′(0)x2 = 1 + 2x + x2.

Exam problem 63(a)

Implicit differentiation with respect to x in the equation 3xexy2 − 2y = 3x2 + y2

gives
3exy2

+ 3xexy2
(y2 + 2xyy′) − 2y′ = 6x + 2yy′.

With x = 1 and y = 0, we get

3 − 2y′(1) = 6, which gives y′(1) = −3/2.

Hence, the slope of the graph at the point (x∗, y∗) = (1, 0) is 3/2.
The linear approximation to y(x) about this point is therefore

y(x) ≈ y(1) + y′(1)(x − 1) = 0 + (−3
2
)(x − 1) = −3

2
x +

3
2

.
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Problem 3

C(x) =
∫

(x2 + x − 10) dx =
1
3
x3 +

1
2
x2 − 10x + K, where K is the constant

of integration. Since C(0) = 50, we find that K = 50, so the cost function is
C(x) = 1

3x3 + 1
2x2 − 10x + 50.

Problem 4

It is natural to write the integrand as a polynomial, and then
∫ 2

0
2x2(2 − x)2 dx =

∫ 2

0
2x2(4 − 4x + x2) dx =

∫ 2

0
(2x4 − 8x3 + 8x2) dx

=
2

0

(2
5
x5 − 2x4 +

8
3
x3) =

(64
5

− 32 +
64
3

) − 0 =
32
15

≈ 2.133.

The figure shows the graph of f(x) = 2x2(2 − x)2 over the interval [0, 2]. The
highest point on the graph is B = (1, 2). The area between the graph and the
x-axis is

∫ 2
0 2x2(2 − x)2 dx = 32/15. We can see from the figure that this area

really is just a little bit greater than the area of the triangle OAB, which is 2.
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Figure for Problem 4

EMEA 9.5.1 (= MA I, 10.6.1)

∫
x
↑
f

e−x

↑
g′

dx = x
↑
f

(−e−x)
↑
g

−
∫

1
↑
f ′

· (−e−x)
↑
g

dx(a)

= −xe−x +
∫

e−x dx = −xe−x − e−x + C

∫
3xe4x dx = 3x · 1

4
e4x −

∫
3 · 1

4
e4x dx =

3
4
xe4x − 3

16
e4x + C(b)

∫
(1 + x2)e−x dx = (1 + x2)(−e−x) −

∫
2x(−e−x) dx(c)
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= −(1 + x2)e−x + 2
∫

xe−x dx

= −(1 + x2)e−x − 2xe−x − 2e−x + C (use (a)!)

= −(x2 + 2x + 3)e−x + C

∫
x
↑
g′

lnx
↑
f

dx =
x2

2
↑
g

lnx
↑
f

−
∫

x2

2
↑
g

1
x
↑
f ′

dx =
x2

2
lnx −

∫
x

2
dx(d)

=
x2

2
lnx − x2

4
+ C

EMEA 9.6.2 (= MA I, 10.7.2)

(b) With u = g(x) = x3 + 2 we get du = g′(x) dx = 3x2 dx and

∫
x2ex3+2 dx =

∫
eg(x) 1

3
g′(x) dx =

∫
1
3
eu du =

1
3
eu + C =

ex3+2

3
+ C .

(c) As a first attempt we could use the substitution u = g(x) = x+2, which gives
du = dx and ∫

ln(x + 2)
2x + 4

dx =
∫

lnu

2u
du .

This does not look very much simpler than the original integral, but if we notice

that
lnu

u
= lnu · 1

u
= lnu · d

du
lnu, then we can see that v = lnu yields dv =

1
u

du

and ∫
lnu

2u
du =

∫
1
2
v dv =

1
4
v2 + C =

1
4
(lnu)2 + C =

1
4
(ln(x + 2))2 + C .

With a little experience we would have noticed straight away that

ln(x + 2)
2x + 4

=
ln(x + 2)
2(x + 2)

=
1
2

ln(x + 2)
d

dx
ln(x + 2) ,

and this immediately suggests the substitution v = ln(x + 2).

Problem 7

(a) f ′(x) = (lnx)2 + x
(
2 lnx · 1

x

)
= lnx (lnx + 2), f ′′(x) =

2
x

(lnx + 1)

(b) f(x) is increasing if and only if f ′(x) = lnx (lnx+2) ≥ 0. Note that f ′(x) = 0
when x = 1 and when lnx = −2, i.e. x = e−2. A sign diagram shows that f ′(x) ≥ 0
(and f(x) is increasing) if and only if 0 < x ≤ e−2 or x ≥ 1. The function is
decreasing in [e−2, 1]. x = 1 is a (global) minimum point since f(x) ≥ 0 and
f(1) = 0. Since f(x) → ∞ as x → ∞, there is no (global) maximum.
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(c) Integration by parts, with g′(x) = x and f(x) = (lnx)2, gives
∫

x(lnx)2 dx =
1
2
x2(lnx)2 −

∫
1
2
x22(lnx)

1
x

dx =
1
2
x2(lnx)2 −

∫
x lnx dx.

Using the result in problem 2, we get∫
x(lnx)2 dx =

1
2
x2(lnx)2 − 1

2
x2 lnx +

1
4
x2 + C.

Problem 8

You need not look for any smart trick in order to solve the integral on the left.
All you have to do is show that the derivative of the right-hand side is

√
x2 + 3.

That is pretty straightforward:

d

dx

(
1
2
x
√

x2 + 3 +
3
2

ln
(
x +

√
x2 + 3

)
+ C

)

=
1
2

√
x2 + 3 +

1
2
x

x√
x2 + 3

+
3
2

1
x +

√
x2 + 3

(
1 +

x√
x2 + 3

)

=
1
2

√
x2 + 3 +

x2

2
√

x2 + 3
+

3
2

1
x +

√
x2 + 3

x +
√

x2 + 3√
x2 + 3

=
1
2

√
x2 + 3 +

x2 + 3
2
√

x2 + 3
=

1
2

√
x2 + 3 +

1
2

√
x2 + 3 =

√
x2 + 3 .

For those of you who want to know how to find the integral: Try the substitution
u = x +

√
x2 + 3. That will give you

(u − x)2 = x2 + 3 ⇐⇒ u2 − 2ux = 3 ⇐⇒ x =
u2 − 3

2u
=

u

2
− 3

2
· 1
u

,

so

dx =
(1

2
+

3
2

· 1
u2

)
du =

u2 + 3
2u2 du .

Also, √
x2 + 3 = u − x =

u

2
+

3
2

· 1
u

=
u2 + 3

2u
.

Hence,
∫ √

x2 + 3 dx =
∫

u2 + 3
2u

u2 + 3
2u2 du =

∫
u4 + 6u2 + 9

4u3 du .

This integral is easy to calculate if you write the integrand as a sum of simple
fractions. Afterwards you have to substitute x+

√
x2 + 3 for u. If you simplify the

result, you will end up with the expression on the right-hand side in the problem.

(Another possibility is to substitute x =
√

3 sinh t, where sinh t = 1
2 (et − e−t)

the hyperbolic sine function, sinus hyperbolicus, cf. Problem 10.8.9 in MA I.)
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