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(For practical reasons some of the solutions may include problem parts that are
not on the problem list for this seminar.)

EMEA, 9.7.1 (= MA I, 10.9.1)

(a)
∫ ∞

1

1
x3 dx = lim

b→∞

∫ b

1
x−3 dx = lim

b→∞

b

1
−1

2
x−2 = lim

b→∞

(
− 1

2b2 +
1
2

)
=

1
2

.

(b) The integral

∫ b

1

1√
x

dx =
∫ b

1
x−1/2 dx =

b

1
2
√

x = 2
√

b − 2

does not converge to any limit as b → ∞. Hence, the integral
∫ ∞

1

1√
x

dx diverges.

(c)
∫ 0

−∞
ex dx = lim

a→−∞

∫ 0

a

ex dx = lim
a→−∞

0

a

ex = lim
a→−∞(1 − ea) = 1.

y

x
a − ε a

y =
x√

a2 − x2

Problem 9.7.1(d)

(d) If we introduce u =
√

a2 − x2 as a new variable we get du =
−x√

a2 − x2
dx and

∫
x√

a2 − x2
dx =

∫
−du = −u + C = −

√
a2 − x2 + C.
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Therefore,
∫ a

0

x√
a2 − x2

dx = lim
ε→0+

∫ a−ε

0

x√
a2 − x2

dx = lim
ε→0+

a−ε

0
−

√
a2 − x2

= lim
ε→0+

(−√
a2 − (a − ε)2 +

√
a2

)
=

√
a2 = a

(since a > 0). Note that we let ε tend to 0 from the right so that a − ε tends to a
from the left.

EMEA, 9.7.7 (= MA I, 10.9.7)

The integrand, f(x) =
1√

x + 2
+

1√
3 − x

, is defined only in the open interval

(−2, 3) and tends to ∞ at both ends of this interval. In order to show that
the integral converges, we use the recipe in formula (9.7.3) on page 321 (formula
(10.9.3) on page 362 in MA I): We split the interval at an arbitrary point, at
x = 0, for instance, and then show that the integrals over (−2, 0] and [0, 3) both
converge. The indefinite integral is

∫
f(x) dx = F (x) + C, where F (x) = 2

√
x + 2 − 2

√
3 − x,

and it is clear that
∫ 0

−2
f(x) dx = lim

a→−2+
(F (0) − F (a)) = F (0) − F (−2)

and ∫ 3

0
f(x) dx = lim

b→3−
(F (b) − F (0)) = F (3) − F (0)

exist. It follows that f is integrable over (−2, 3) and
∫ 3

−2
f(x) dx =

∫ 0

−2
f(x) dx +

∫ 3

0
f(x) dx = F (3) − F (−2) = 2

√
5 + 2

√
5 = 4

√
5.

Exam problem 21

(a) Using the rules
∫

(ax + b)n dx =
(ax + b)n+1

a(n + 1)
+ C1 (a �= 0, n �= −1),

and ∫
eax =

eax

a
+ C2 (a �= 0),

we get ∫ (
(2x − 1)2 + e2x−2) dx =

(2x − 1)3

2 · 3
+

e2x−2

2
+ C.
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(b) Here we could use polynomial division to simplify the fraction, but it is a little
easier to use the substitution u = x − 1. Then x = u + 1, dx = du, and

∫
x2 − 2x

x − 1
dx =

∫
(u + 1)2 − 2(u + 1)

u
du =

∫
u2 − 1

u
du

=
∫ (

u − 1
u

)
du =

u2

2
− ln |u| + C =

(x − 1)2

2
− ln |x − 1| + C.

(This can also be written as 1
2x2 − x − ln |x − 1| + C1, with C1 = C + 1

2 .)

(c) The innermost integral is
∫ 2

1

1
(x + y)2

dx =
x=2

x=1
− 1

x + y
= − 1

y + 2
+

1
y + 1

,

and the double integral is therefore
∫ 1

0

(
− 1

y + 2
+

1
y + 1

)
dy =

1

0
(− ln(y + 2) + ln(y + 1))

= (− ln 3 + ln 2) − (− ln 2 + ln 1) = 2 ln 2 − ln 3 = ln(4/3).

Exam problem 71

(a) The domain bounded by the curve y = 4
√

x/(2 +
√

x ), the x-axis, and the
straight line x = 4 is shaded in the figure below.

y

1

2

x

y

1

2

x

1 2 3 4 5

y = 4
√

x

2+
√

x

Problem 71

The area of this domain is A =
∫ 4

0

4
√

x

2 +
√

x
dx. With the substitution u = 2 +

√
x

we get x = (u − 2)2, dx = 2(u − 2) du, and

A =
∫ u=4

u=2

4(u − 2)
u

2(u − 2) du =
∫ 4

2

8(u − 2)2

u
du =

∫ 4

2

(
8u − 32 +

32
u

)
du

=
4

2
(4u2 − 32u + 32 lnu) = (64 − 128 + 32 ln 4) − (16 − 64 + 32 ln 2)

= 32 ln 2 − 16 (≈ 6.1807).
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(b) L’Hôpital’s rule yields

lim
x→a

ax − xa

x − a
=

“0
0
”

= lim
x→a

ax ln a − axa−1

1
= aa(ln a − 1).

Exam problem 77

(i) We first calculate the indefinite integral. Integration by parts gives∫
x(2 + x)1/3 dx = x

3
4
(2 + x)4/3 − 3

4

∫
(2 + x)4/3 dx

= x
3
4
(2 + x)4/3 − 9

28
(2 + x)7/3 + C

The definite integral is then
∫ 6

−1
x(2 + x)1/3 dx =

6

−1

(
3x

4
(2 + x)4/3 − 9

28
(2 + x)7/3

)

=
9
2
84/3 − 9

28
87/3 −

(
−3

4
− 9

28

)
=

447
14

≈ 31.92,

where we have used that 81/3 = 3√8 = 2.
Alternatively, we can use substitution and calculate as follows: Introduce

u = (2 + x)1/3 as a new variable. That gives x = u3 − 2, dx = 3u2 du, and∫
x(2 + x)1/3 dx =

∫
(u3 − 2)u3u2 du =

∫
(3u6 − 6u3) du

=
3
7
u7 − 6

4
u4 + C =

3
7
(2 + x)7/3 − 3

2
(2 + x)4/3 + C.

(This is indeed equal to the indefinite integral we found above, although it does
not look that way at first glance.)

We the calculate the definite integral as before. However, we can also use
formula (2) on page 333 in EMEA (page 355 in MA I). That will give us

∫ 6

−1
x(2 + x)1/3 =

∫ 2

1
(3u6 − 6u3) du =

2

1

(
3
7
u7 − 3

2
u4

)

etc.

(ii) Here we use the substitution z = 3√x = x1/3, which gives x = z3 and
dx = 3z2 dz. The integral then becomes∫

e
3√x dx =

∫
ez3z2 dz = 3

∫
z2ez dz.

In order to find the last integral, we use integration by parts twice:∫
z2ez dz = z2ez −

∫
2zez dz = z2ez − (

2zez −
∫

2ez dz
)

= z2ez − 2zez +
∫

2ez dz = z2ez − 2zez + 2ez + C.
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Then ∫
e

3√x dx = 3(z2ez − 2zez + 2ez + C) = (3x2/3 − 6x1/3 + 6)e
3√x + C1,

where C1 = 3C.

Exam problem 97

(a) We have ϕ(0) = ln 1 − ln 2 = − ln 2. Further,

ϕ′(x) =
1

x + 1
− 1

x + 2
=

1
(x + 1)(x + 2)

> 0

for all x ≥ 0, so ϕ is strictly increasing. Finally,

ϕ(x) = ln
x + 1
x + 2

= ln
1 + 1/x

1 + 2/x
→ 0 as x → ∞.

It follows that the range (Norwegian: “verdimengden”) of ϕ is Vϕ = [− ln 2, 0).
Note that it is not enough to observe that ϕ(0) = − ln 2 and limx→∞ ϕ(x) = 0.

The function value, ϕ(x), might conceivably go both up and down as x runs from
0 to ∞, so that ϕ might take on values outside the interval [− ln 2, 0). But once
we know that the function is increasing, this cannot happen.

(b) The function ϕ is strictly increasing throughout its domain (Norwegian: “defi-
nisjonsomr̊ade”), namely the interval [0, ∞). Therefore it has an inverse ϕ−1

defined on the range Vϕ = [− ln 2, 0) of ϕ. We can find a formula for the inverse
in the following way:

y = ϕ−1(x) ⇐⇒ ϕ(y) = x ⇐⇒ ln
y + 1
y + 2

= x ⇐⇒ y + 1
y + 2

= ex

⇐⇒ y + 1 = ex(y + 2) ⇐⇒ y(1 − ex) = 2ex − 1

⇐⇒ y =
2ex − 1
1 − ex

.

(c) In order to find the inverse of the function ϕ′, we first need to check whether
ϕ′ really has an inverse. We know that ϕ′(x) is defined for x > 0. Because

ϕ′′(x) = − 1
(x + 1)2

+
1

(x + 2)2
=

(x + 1)2 − (x + 2)2

(x + 1)2(x + 2)2
=

−2x − 3
(x + 1)2(x + 2)2

< 0

for all x > 0, the function ϕ′(x) is strictly decreasing throughout its domain,
Dϕ′ = (0, ∞). Since ϕ′(x) → 1/2 as x → 0 and ϕ′(x) → 0 as x → ∞, the range of
ϕ′ is Vϕ′ = (0, 1/2). It follows that ϕ′ has an inverse function, defined on (0, 1/2)..
Let h = (ϕ′)−1 be this inverse. Then h is defined on (0, 1/2).

We have

y = h(x) ⇐⇒ ϕ′(y) = x ⇐⇒ 1
(y + 1)(y + 2)

= x ⇐⇒ (y + 1)(y + 2) =
1
x

⇐⇒ y2 + 3y + 2 − 1
x

= 0.(∗)
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It is tacitly understood here that y lies in Vh = Dϕ′ = (0, ∞) and that x lies in
Dh = (0, 1/2). Equation (∗) is a quadratic equation for y. If we solve this equation
we get

y =
−3 ±

√
9 − 4(2 − 1

x )

2
= −3

2
± 1

2

√
1 +

4
x

= −3
2

±
√

1
4

+
1
x

.

Since y is supposed to be positive, it is clear that we have to choose the + sign in
front of the square root. Hence,

(ϕ′)−1(x) = h(x) = −3
2

+

√
1
4

+
1
x

.
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