ECON3120/4120 Mathematics 2, spring 2009

Problem solutions for Seminar 6, 2-6 March 2009

(For practical reasons some of the solutions may include problem parts that are not on the problem list for this seminar.)

EMEA, 15.7.3 (= LA, 2.1.5)

Using the definitions of vector addition and multiplication of a vector by a real number, we get

$$
3(x, y, z)+5(-1,2,3)=(4,1,3) \Longleftrightarrow(3 x-5,3 y+10,3 z+15)=(4,1,3)
$$

Since two vectors are equal if and only if they are component-wise equal, this vector equation is equivalent to the equation system

$$
3 x-5=4, \quad 3 y+10=1, \quad 3 z+15
$$

with the obvious solution

$$
x=3, \quad y=-3, \quad z=-4
$$

EMEA, 15.7.8 (= LA, 2.2.4)

The dot product (inner product, scalar product; Norwegian: prikkproduktet, indreproduktet, skalarproduktet) is

$$
(x, x-1,3) \cdot(x, x, 3 x)=x^{2}+(x-1) x+9 x=2 x^{2}+8 x=2 x(x+4)
$$

The two vectors are mutually orthogonal when their dot product equals 0 , that is, for $x=0$ and for $x=-4$.

EMEA, 15.8.2 (= LA, 2.3.2)
(a) Note: In the first two editions of EMEA, \mathbf{x} was given as $\mathbf{x}=(1-\lambda) \mathbf{a}+\lambda \mathbf{b}$, whereas in the third edition, and in LA, $\mathbf{x}=\lambda \mathbf{a}+(1-\lambda) \mathbf{b}$. So if you have an old edition of EMEA, please read λ as $1-\lambda$.

(b) As λ runs from 0 to $1, \mathbf{x}$ will trace out the line segment from \mathbf{a} to \mathbf{b} in EMEA (from \mathbf{b} to \mathbf{a} in LA). By the point-point formula for a straight line ("topunktsformelen for en rett linje"), the straight line through $\mathbf{a}=(3,1)$ and $\mathbf{b}=(-1,2)$ has the equation

$$
\begin{equation*}
y-1=\frac{2-1}{-1-3}(x-3)=-\frac{1}{4}(x-3) \Longleftrightarrow y=-\frac{1}{4} x+\frac{7}{4} \Longleftrightarrow x+4 y=7 \tag{*}
\end{equation*}
$$

For every λ in \mathbb{R} the point $(x, y)=(1-\lambda) \mathbf{a}+\lambda \mathbf{b}=(3-4 \lambda, 1+\lambda)$ satisfies $(*)$, that is, the point lies on L. Conversely, if $\left(x_{0}, y_{0}\right)$ is a point on L, then $x_{0}=7-4 y_{0}$, and if we let $\lambda=y_{0}-1$, then $(1-\lambda) \mathbf{a}+\lambda \mathbf{b}=(3-4 \lambda, 1+\lambda)=\left(7-4 y_{0}, y_{0}\right)=\left(x_{0}, y_{0}\right)$.

EMEA 15.8.4 (= LA, 2.3.3)

(a) We get

$$
x_{1} \mathbf{a}+x_{2} \mathbf{b}=\left(x_{1}, 2 x_{1}, x_{1}\right)+\left(-3 x_{2}, 0,-2 x_{2}\right)=\left(x_{1}-3 x_{2}, 2 x_{1}, x_{1}-2 x_{2}\right) .
$$

It follows that the vector equation $x_{1} \mathbf{a}+x_{2} \mathbf{b}=(5,4,4)$ is equivalent to the equation system

$$
\begin{align*}
x_{1}-3 x_{2} & =5 \tag{1}\\
2 x_{1} & =4 \tag{2}\\
x_{1}-2 x_{2} & =4 \tag{3}
\end{align*}
$$

From (2), $x_{1}=2$, and if we substitute this value for x_{1} in (1), we get $2-3 x_{2}=5$, which yields $\underline{x_{2}=-1}$. Inserting these values for x_{1} and x_{2}, we find that they also satisfy equation (3).

Note: This check is important, because it might well happen that there were no values of x_{1} and x_{2} that would satisfy all the equations (1)-(3). We see an example of this in part (b).
(b) The vector equation $x_{1} \mathbf{a}+x_{2} \mathbf{b}=(-3,6,1)$ yields the equation system

$$
\begin{align*}
x_{1}-3 x_{2} & =-3 \\
2 x_{1} & =6 \\
x_{1}-2 x_{2} & =1
\end{align*}
$$

From (2^{\prime}) we get $x_{1}=3$, and then $\left(1^{\prime}\right)$ yields $x_{2}=2$, but these values do not satisfy (3^{\prime}). Hence there are no numbers x_{1} and x_{2} such that $x_{1} \mathbf{a}+x_{2} \mathbf{b}=(-3,6,1)$.

Problem 2

If the price vector is $\mathbf{p}=\left(p_{1}, p_{2}, p_{3}\right)=(4,2,5)$ and you are just able to afford the commodity vector $\mathbf{x}_{0}=(6,4,3)$, then the amount of money at your disposal is

$$
\mathbf{p} \cdot \mathbf{x}_{0}=4 \cdot 6+2 \cdot 4+5 \cdot 3=47
$$

kroner (or doubloons or whatever the current unit of currency may be). Your budget constraint is therefore

$$
p_{1} x_{1}+p_{2} x_{2}+p_{3} x_{3} \leq 47,
$$

meaning that if you want to buy a commodity vector $\mathbf{x}=\left(x_{1}, x_{2}, x_{3}\right)$, its total cost, $\mathbf{p} \cdot \mathbf{x}$, must not exceed 47 .

Problem 3

(a) $\left(\begin{array}{rr}2 & -5 \\ 5 & 8\end{array}\right)\binom{x_{1}}{x_{2}}=\binom{3}{5}$
(b) $\left(\begin{array}{ccc}a & 1 & a+1 \\ 1 & 2 & 1 \\ 3 & 4 & 7\end{array}\right)\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{l}b_{1} \\ b_{2} \\ b_{3}\end{array}\right)$
(c) $\left(\begin{array}{rrrr}1 & 1 & 1 & 1 \\ 1 & 3 & 2 & 4 \\ 1 & 4 & 8 & 0 \\ 2 & 0 & 1 & -1\end{array}\right)\left(\begin{array}{l}x \\ y \\ z \\ t\end{array}\right)=\left(\begin{array}{l}a \\ b \\ c \\ d\end{array}\right)$

Problem 4

(a) $2 \mathbf{A}-3 \mathbf{B}=\left(\begin{array}{rr}7 & 0 \\ -1 & 11\end{array}\right) \quad$ (b) $(\mathbf{A}-\mathbf{B})^{\prime}=\left(\begin{array}{ll}3 & 0 \\ 1 & 5\end{array}\right)$
(c) $\left(\mathbf{C}^{\prime} \mathbf{A}^{\prime}\right) \mathbf{B}^{\prime}=\left(\begin{array}{rr}1 & -2 \\ 3 & 4\end{array}\right)\left(\begin{array}{rr}-1 & 1 \\ 2 & -1\end{array}\right)=\left(\begin{array}{rr}-5 & 3 \\ 5 & -1\end{array}\right)$
(d) $\mathbf{C}^{\prime}\left(\mathbf{A}^{\prime} \mathbf{B}^{\prime}\right)=\left(\begin{array}{rr}2 & -1 \\ 0 & 1\end{array}\right)\left(\begin{array}{rr}0 & 1 \\ 5 & -1\end{array}\right)=\left(\begin{array}{rr}-5 & 3 \\ 5 & -1\end{array}\right)$. (Of course, we could have used the associative law, which says that $\left.\mathbf{C}^{\prime}\left(\mathbf{A}^{\prime} \mathbf{B}^{\prime}\right)=\left(\mathbf{C}^{\prime} \mathbf{A}^{\prime}\right) \mathbf{B}^{\prime}\right)$.
(e) $\quad \mathbf{D}^{\prime} \mathbf{D}^{\prime}$ is not defined. (f) $\mathbf{D}^{\prime} \mathbf{D}=\left(\begin{array}{ll}1 & 1 \\ 1 & 3 \\ 1 & 4\end{array}\right)\left(\begin{array}{lll}1 & 1 & 1 \\ 1 & 3 & 4\end{array}\right)=\left(\begin{array}{rrr}2 & 4 & 5 \\ 4 & 10 & 13 \\ 5 & 13 & 17\end{array}\right)$

Problem 5

The equation is of the form $\dot{x}+a(t) x=b(t)$, i.e. linear with a variable coefficient. Formula (1.4.6) on page 15 in MA II or (5.4.6) in FMEA says that

$$
\begin{equation*}
\dot{x}+a(t) x=b(t) \Longleftrightarrow x=e^{-\int a(t) d t}\left(C+\int e^{\int a(t) d t} b(t) d t\right) \tag{*}
\end{equation*}
$$

(This formula is not in EMEA.) For the given equation we have $a(t)=2 / t$ and $b(t)=e^{t}$, so formula $(*)$ yields

$$
x=e^{-\int(2 / t) d t}\left(C+e^{\int(2 / t) d t} e^{t} d t\right)
$$

Here $\int(2 / t) d t=2 \ln |t|+C_{1}=\ln t^{2}+C_{1}$, and by choosing $C_{1}=0$ we get

$$
x=e^{-\ln t^{2}}\left(C+\int e^{\ln t^{2}} e^{t} d t\right)=\frac{1}{t^{2}}\left(C+\int t^{2} e^{t} d t\right)
$$

Using integration by parts twice, we get

$$
\int t^{2} e^{t} d t=\cdots=t^{2} e^{t}-2 t e^{t}+2 e^{t} \quad\left(+C_{2}\right)
$$

and so

$$
x=\frac{C+\left(t^{2}-2 t+2\right) e^{t}}{t^{2}}
$$

The integral curve through $(t, x)=(1,1)$ is obtained for the value of C that yields $x(1)=1$, i.e. $1=C+(1-2+2) e=C+e$. This gives $C=1-e$, and the solution is

$$
x=\frac{1-e+\left(t^{2}-2 t+2\right) e^{t}}{t^{2}}
$$

Exam problem 36

We are to study the function

$$
f(x)=x-(\alpha+\beta) e^{-x}+\alpha e^{-2 x}+\beta
$$

where α and β are constants and $\alpha>\beta>0$.

$$
\begin{align*}
f^{\prime}(x) & =1+(\alpha+\beta) e^{-x}-2 \alpha e^{-2 x} \tag{a}\\
f^{\prime \prime}(x) & =-(\alpha+\beta) e^{-x}+4 \alpha e^{-2 x}=\frac{4 \alpha-(\alpha+\beta) e^{x}}{e^{2 x}}
\end{align*}
$$

(b) From the last expression for $f^{\prime \prime}(x)$, it follows that

$$
f^{\prime \prime}(x)=0 \Longleftrightarrow(\alpha+\beta) e^{x}=4 \alpha \Longleftrightarrow x=\bar{x}=\ln \frac{4 \alpha}{\alpha+\beta}
$$

It also follows that $f^{\prime \prime}(x)>0$ for $x<\bar{x}$ and $f^{\prime \prime}(x)<0$ for $x>\bar{x}$, so $f^{\prime \prime}(x)$ changes sign around $x=\bar{x}$. Hence \bar{x} is an inflection point for f, and it is the only inflection point because $f^{\prime \prime}$ has no other zeros.

Since $0<\beta<\alpha$, we have

$$
\frac{4 \alpha}{\alpha+\beta}>\frac{4 \alpha}{\alpha+\alpha}=2
$$

and therefore

$$
\bar{x}>\ln \frac{4 \alpha}{\alpha+\beta}>\ln 2>0
$$

(c) The roots of the equation $2 \alpha z^{2}-(\alpha+\beta) z-1=0$ are

$$
z_{1}=\frac{(\alpha+\beta)+\sqrt{(\alpha+\beta)^{2}+8 \alpha}}{4 \alpha} \quad \text { and } \quad z_{2}=\frac{(\alpha+\beta)-\sqrt{(\alpha+\beta)^{2}+8 \alpha}}{4 \alpha}
$$

and because $\sqrt{(\alpha+\beta)^{2}+8 \alpha}>\sqrt{(\alpha+\beta)^{2}}=\alpha+\beta$, we have $z_{1}>0$ and $z_{2}<0$. (We could also have used that $z_{1} z_{2}=-1 /(2 \alpha)<0$, which shows that one root is positive and the other negative.)
(d) With $z=e^{-x_{0}}$, we see that

$$
f^{\prime}\left(x_{0}\right)=0 \Longleftrightarrow 1+(\alpha+\beta) z-2 \alpha z^{2}=0 .
$$

We must have $z>0$, and in part (c) we showed that the equation has exactly one positive solution, namely

$$
z_{1}=\frac{(\alpha+\beta)+\sqrt{(\alpha+\beta)^{2}+8 \alpha}}{4 \alpha}
$$

It follows that $x_{0}=-\ln z_{1}$ is the only stationary point of f.
We have

$$
f^{\prime}(x)=e^{-2 x}\left[e^{2 x}+(\alpha+\beta) e^{x}-2 \alpha\right]
$$

where the expression in square brackets is a strictly increasing function of x. Since $[\cdots]=0$ for $x=x_{0}$, we get

$$
\begin{cases}f^{\prime}(x)<0 & \text { for } x<x_{0} \\ f^{\prime}(x)>0 & \text { for } x>x_{0}\end{cases}
$$

Hence, f is strictly decreasing in $\left(-\infty, x_{0}\right]$ and strictly increasing in $\left[x_{0}, \infty\right)$, so x_{0} must be a global minimum point of f.
(e) From the calculations in (d) we get

$$
\begin{aligned}
x_{0}>0 & \Longleftrightarrow \ln z_{1}<0 \Longleftrightarrow z_{1}<1 \Longleftrightarrow \alpha+\beta+\sqrt{(\alpha+\beta)^{2}+8 \alpha}<4 \alpha \\
& \Longleftrightarrow \sqrt{(\alpha+\beta)^{2}+8 \alpha}<3 \alpha-\beta \Longleftrightarrow(\alpha+\beta)^{2}<(3 \alpha-\beta)^{2} \\
& \Longleftrightarrow \alpha^{2}+2 \alpha \beta+\beta^{2}+8 \alpha<9 \alpha^{2}-6 \alpha \beta+\beta^{2} \\
& \Longleftrightarrow-8 \alpha^{2}+8 \alpha \beta+8 \alpha<0 \Longleftrightarrow-8 \alpha(\alpha-\beta-1)<0 \\
& \Longleftrightarrow \alpha-\beta-1>0 \Longleftrightarrow \alpha>\beta+1 .
\end{aligned}
$$

The equivalence marked $(*)$ is valid because we know that $3 \alpha-\beta>0$ (otherwise only \Longrightarrow would be valid).

The following is a simpler solution: We know that $f^{\prime}(x)$ is positive everywhere to the right of x_{0} and negative everywhere to the left. It follows that $x_{0}>0$ if and only if $f^{\prime}(0)<0$. Now $f^{\prime}(0)=1+(\alpha+\beta) e^{0}-2 \alpha e^{0}=1+\beta-\alpha$, and this is negative if and only if $\alpha>\beta+1$.

