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(For practical reasons some of the solutions may include problem parts that are
not on the problem list for this seminar.)

EMEA, 15.7.3 (= LA, 2.1.5)

Using the definitions of vector addition and multiplication of a vector by a real
number, we get

3(x, y, z) + 5(−1, 2, 3) = (4, 1, 3) ⇐⇒ (3x − 5, 3y + 10, 3z + 15) = (4, 1, 3)

Since two vectors are equal if and only if they are component-wise equal, this
vector equation is equivalent to the equation system

3x − 5 = 4, 3y + 10 = 1, 3z + 15

with the obvious solution

x = 3, y = −3, z = −4.

EMEA, 15.7.8 (= LA, 2.2.4)

The dot product (inner product, scalar product; Norwegian: prikkproduktet,
indreproduktet, skalarproduktet) is

(x, x − 1, 3) · (x, x, 3x) = x2 + (x − 1)x + 9x = 2x2 + 8x = 2x(x + 4).

The two vectors are mutually orthogonal when their dot product equals 0, that is,
for x = 0 and for x = −4.

EMEA, 15.8.2 (= LA, 2.3.2)

(a) Note: In the first two editions of EMEA, x was given as x = (1 − λ)a + λb,
whereas in the third edition, and in LA, x = λa + (1 − λ)b. So if you have an old
edition of EMEA, please read λ as 1 − λ.
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Problem 15.8.2
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(b) As λ runs from 0 to 1, x will trace out the line segment from a to b in EMEA
(from b to a in LA). By the point-point formula for a straight line (“topunkts-
formelen for en rett linje”), the straight line through a = (3, 1) and b = (−1, 2)
has the equation

y − 1 =
2 − 1

−1 − 3
(x − 3) = −1

4
(x − 3) ⇐⇒ y = −1

4
x +

7
4

⇐⇒ x + 4y = 7. (∗)

For every λ in R the point (x, y) = (1−λ)a+λb = (3−4λ, 1+λ) satisfies (∗), that
is, the point lies on L. Conversely, if (x0, y0) is a point on L, then x0 = 7−4y0, and
if we let λ = y0 − 1, then (1−λ)a+λb = (3− 4λ, 1+λ) = (7− 4y0, y0) = (x0, y0).

EMEA 15.8.4 (= LA, 2.3.3)

(a) We get

x1a + x2b = (x1, 2x1, x1) + (−3x2, 0, −2x2) = (x1 − 3x2, 2x1, x1 − 2x2).

It follows that the vector equation x1a+x2b = (5, 4, 4) is equivalent to the equation
system

x1 − 3x2 = 5 (1)
2x1 = 4 (2)
x1 − 2x2 = 4 (3)

From (2), x1 = 2, and if we substitute this value for x1 in (1), we get 2 − 3x2 = 5,
which yields x2 = −1. Inserting these values for x1 and x2, we find that they also
satisfy equation (3).

Note: This check is important, because it might well happen that there were
no values of x1 and x2 that would satisfy all the equations (1)–(3). We see an
example of this in part (b).

(b) The vector equation x1a + x2b = (−3, 6, 1) yields the equation system

x1 − 3x2 = −3 (1′)
2x1 = 6 (2′)
x1 − 2x2 = 1 (2′)

From (2′) we get x1 = 3, and then (1′) yields x2 = 2, but these values do not
satisfy (3′). Hence there are no numbers x1 and x2 such that x1a+x2b = (−3, 6, 1).

Problem 2

If the price vector is p = (p1, p2, p3) = (4, 2, 5) and you are just able to afford the
commodity vector x0 = (6, 4, 3), then the amount of money at your disposal is

p · x0 = 4 · 6 + 2 · 4 + 5 · 3 = 47

kroner (or doubloons or whatever the current unit of currency may be). Your
budget constraint is therefore

p1x1 + p2x2 + p3x3 ≤ 47,
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meaning that if you want to buy a commodity vector x = (x1, x2, x3), its total
cost, p · x, must not exceed 47.

Problem 3

(a)
(

2 −5
5 8

) (
x1
x2

)
=

(
3
5

)
(b)

⎛
⎝ a 1 a + 1

1 2 1
3 4 7

⎞
⎠

⎛
⎝ x

y
z

⎞
⎠ =

⎛
⎝ b1

b2
b3

⎞
⎠

(c)

⎛
⎜⎝

1 1 1 1
1 3 2 4
1 4 8 0
2 0 1 −1

⎞
⎟⎠

⎛
⎜⎝

x
y
z
t

⎞
⎟⎠ =

⎛
⎜⎝

a
b
c
d

⎞
⎟⎠

Problem 4

(a) 2A − 3B =
(

7 0
−1 11

)
(b) (A − B)′ =

(
3 0
1 5

)

(c) (C′A′)B′ =
(

1 −2
3 4

) ( −1 1
2 −1

)
=

( −5 3
5 −1

)

(d) C′(A′B′) =
(

2 −1
0 1

) (
0 1
5 −1

)
=

( −5 3
5 −1

)
. (Of course, we could have

used the associative law, which says that C′(A′B′) = (C′A′)B′).

(e) D′D′ is not defined. (f) D′D =

⎛
⎝ 1 1

1 3
1 4

⎞
⎠ (

1 1 1
1 3 4

)
=

⎛
⎝ 2 4 5

4 10 13
5 13 17

⎞
⎠
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Problem 5

The equation is of the form ẋ + a(t)x = b(t), i.e. linear with a variable coefficient.
Formula (1.4.6) on page 15 in MA II or (5.4.6) in FMEA says that

ẋ + a(t)x = b(t) ⇐⇒ x = e−
∫

a(t) dt

(
C +

∫
e
∫

a(t) dtb(t) dt

)
(∗)

(This formula is not in EMEA.) For the given equation we have a(t) = 2/t and
b(t) = et, so formula (∗) yields

x = e−
∫

(2/t) dt
(
C + e

∫
(2/t) dtet dt

)
.

Here
∫

(2/t) dt = 2 ln |t| + C1 = ln t2 + C1, and by choosing C1 = 0 we get

x = e− ln t2
(
C +

∫
eln t2et dt

)
=

1
t2

(
C +

∫
t2et dt

)

Using integration by parts twice, we get∫
t2et dt = · · · = t2et − 2tet + 2et ( + C2),

and so

x =
C + (t2 − 2t + 2)et

t2
.

The integral curve through (t, x) = (1, 1) is obtained for the value of C that yields
x(1) = 1, i.e. 1 = C +(1−2+2)e = C +e. This gives C = 1−e, and the solution is

x =
1 − e + (t2 − 2t + 2)et

t2
.
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Exam problem 36

We are to study the function

f(x) = x − (α + β)e−x + αe−2x + β,

where α and β are constants and α > β > 0.

f ′(x) = 1 + (α + β)e−x − 2αe−2x(a)

f ′′(x) = −(α + β)e−x + 4αe−2x =
4α − (α + β)ex

e2x

(b) From the last expression for f ′′(x), it follows that

f ′′(x) = 0 ⇐⇒ (α + β)ex = 4α ⇐⇒ x = x̄ = ln
4α

α + β
.

It also follows that f ′′(x) > 0 for x < x̄ and f ′′(x) < 0 for x > x̄, so f ′′(x) changes
sign around x = x̄. Hence x̄ is an inflection point for f , and it is the only inflection
point because f ′′ has no other zeros.

Since 0 < β < α, we have

4α

α + β
>

4α

α + α
= 2,

and therefore

x̄ > ln
4α

α + β
> ln 2 > 0.

(c) The roots of the equation 2αz2 − (α + β)z − 1 = 0 are

z1 =
(α + β) +

√
(α + β)2 + 8α

4α
and z2 =

(α + β) − √
(α + β)2 + 8α

4α
,

and because
√

(α + β)2 + 8α >
√

(α + β)2 = α + β, we have z1 > 0 and z2 < 0.
(We could also have used that z1z2 = −1/(2α) < 0, which shows that one root is
positive and the other negative.)

(d) With z = e−x0 , we see that

f ′(x0) = 0 ⇐⇒ 1 + (α + β)z − 2αz2 = 0.

We must have z > 0, and in part (c) we showed that the equation has exactly one
positive solution, namely

z1 =
(α + β) +

√
(α + β)2 + 8α

4α
.

It follows that x0 = − ln z1 is the only stationary point of f .
We have

f ′(x) = e−2x[e2x + (α + β)ex − 2α],
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where the expression in square brackets is a strictly increasing function of x. Since
[· · ·] = 0 for x = x0, we get

{
f ′(x) < 0 for x < x0,
f ′(x) > 0 for x > x0.

Hence, f is strictly decreasing in (−∞, x0] and strictly increasing in [x0, ∞), so x0
must be a global minimum point of f .

(e) From the calculations in (d) we get

x0 > 0 ⇐⇒ ln z1 < 0 ⇐⇒ z1 < 1 ⇐⇒ α + β +
√

(α + β)2 + 8α < 4α

⇐⇒
√

(α + β)2 + 8α < 3α − β
(∗)⇐⇒ (α + β)2 < (3α − β)2

⇐⇒ α2 + 2αβ + β2 + 8α < 9α2 − 6αβ + β2

⇐⇒ −8α2 + 8αβ + 8α < 0 ⇐⇒ −8α(α − β − 1) < 0
⇐⇒ α − β − 1 > 0 ⇐⇒ α > β + 1 .

The equivalence marked (∗) is valid because we know that 3α − β > 0 (otherwise
only =⇒ would be valid).

The following is a simpler solution: We know that f ′(x) is positive everywhere
to the right of x0 and negative everywhere to the left. It follows that x0 > 0 if
and only if f ′(0) < 0. Now f ′(0) = 1 + (α + β)e0 − 2αe0 = 1 + β − α, and this is
negative if and only if α > β + 1.
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