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Problem 1

Gaussian elimination yields
⎛
⎝

1 1 0 −2 2
0 2 1 1 3
1 1 0 1 2

⎞
⎠

−1

←

∼
⎛
⎝

1 1 0 −2 2
0 2 1 1 3
0 0 0 3 0

⎞
⎠
←
−1/2

1/3

∼
⎛
⎝

1 0 −1/2 −5/2 1/2
0 2 1 1 3
0 0 0 1 0

⎞
⎠ 1/2

∼
⎛
⎝

1 0 −1/2 −5/2 1/2
0 1 1/2 1/2 3/2
0 0 0 1 0

⎞
⎠
←
←
−1/2 5/2

∼
⎛
⎝

1 0 −1/2 0 1/2
0 1 1/2 0 3/2
0 0 0 1 0

⎞
⎠

The last matrix represents the equation system

x1 − 1
2x3 = 1

2

x2 + 1
2x3 = 3

2

x4 = 0

We can choose x3 (or x1 or x2) arbitrarily, and the solutions are

x1 =
1
2

+
1
2
s, x2 =

3
2
− 1

2
s, x3 = s, x4 = 0,

where s is any real number.
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Exam problem 142

(a) Cofactor expansion along the first row yields

|A| =
∣∣∣∣∣∣
1 3 4
2 2 1
3 −3 −9

∣∣∣∣∣∣
= 1

∣∣∣∣
2 1
−3 −9

∣∣∣∣− 3
∣∣∣∣
2 1
3 −9

∣∣∣∣ + 4
∣∣∣∣
2 2
3 −3

∣∣∣∣

= 1(−15)− 3(−21) + 4(−12) = −15 + 63− 48 = 0.

(b) We start Gaussian elimination:

⎛
⎝

1 3 4 b1
2 2 1 b2
3 −3 −9 b3

⎞
⎠

−2 −3
←
←

∼
⎛
⎝

1 3 4 b1
0 −4 −7 b2 − 2b1
0 −12 −21 b3 − 3b1

⎞
⎠ −3
←

∼
⎛
⎝

1 3 4 b1
0 −4 −7 b2 − 2b1
0 0 0 3b1 − 3b2 + b3

⎞
⎠ .

Thus the original system is equivalent to

x + 3y + 4z = b1

−4y − 7z = b2 − 2b1

0 = 3b1 − 3b2 + b3

It follows that for the system to have solutions, it is necessary that 3b1−3b2 +b3 =
0. This condition is also sufficient, because if it is satisfied, then the second
equation yields y expressed in terms of z. We can then use the first equation to
express x in terms of z. (An alternative is to use Gaussian elimination to the
“bitter end”, but it is unnecessary here because we have not been asked to find
the solutions.)

Exam problem 69

(a) The determinant is

∣∣∣∣∣∣
1 −1 1
1 1 −1
3 1 t

∣∣∣∣∣∣
=

∣∣∣∣∣∣
0 −1 0
2 1 0
4 1 t + 1

∣∣∣∣∣∣
= (t + 1)

∣∣∣∣
0 −1
2 1

∣∣∣∣ = 2(t + 1).

(We get the first equality by adding the second column to each of the other two
columns. Thereafter we use cofactor expansion along the first row. An alternative
is simply to use the definition of a determinant.)
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(b) Gaussian elimination yields

⎛
⎝

1 −1 1 2
1 1 −1 1
3 1 −1 4

⎞
⎠
−1−3
←
←

∼
⎛
⎝

1 −1 1 2
0 2 −2 −1
0 4 −4 −2

⎞
⎠ 1/2

∼
⎛
⎝

1 −1 1 2
0 1 −1 −1/2
0 4 −4 −2

⎞
⎠
←

1 −4
←

∼
⎛
⎝

1 0 0 3/2
0 1 −1 −1/2
0 0 0 0

⎞
⎠ .

The last matrix shows that the system has the solution

x = 3/2, y = a− 1/2, z = a,

where a is arbitrary.

Exam problem 72

(a) Cofactor expansion along the second column gives

∣∣∣∣∣∣
a 1 4
2 1 a2

1 0 −3

∣∣∣∣∣∣
= −

∣∣∣∣
2 a2

1 −3

∣∣∣∣ +
∣∣∣∣
a 4
1 −3

∣∣∣∣ = −(−6− a2) + (−3a− 4) = a2 − 3a + 2.

(b) Gaussian elimination yields

⎛
⎝

a 1 4 2
2 1 a2 2
1 0 −3 a

⎞
⎠
←

←
∼

⎛
⎝

1 0 −3 a
2 1 a2 2
a 1 4 2

⎞
⎠

−2 −a
←
←

∼
⎛
⎝

1 0 −3 a
0 1 a2 + 6 −2a + 2
0 1 3a + 4 −a2 + 2

⎞
⎠ −1
←

∼
⎛
⎝

1 0 −3 a
0 1 a2 + 6 −2a + 2
0 0 −a2 + 3a− 2 −a2 + 2a

⎞
⎠

We can see from this that the system has a unique solution if and only if −a2 +
3a− 2 �= 0, that is, if and only if a �= 1 and a �= 2.

If a = 2, we get an infinite number of solutions, and if a = 1, there are no
solutions at all.

(c) If we replace the right-hand sides with b1, b2, and b3, and then perform the
same operations as in part (b), we get an equation system with the augmented (or
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extended) coefficient matrix (Norwegian: “den utvidede koeffisientmatrisen”)
⎛
⎝

1 0 −3 b3
0 1 a2 + 6 b2 − 2b3
0 0 −a2 + 3a− 2 b1 − b2 + (2− a)b3

⎞
⎠ .

The system has an infinite number of solutions if and only if all elements in the last
row are 0, that is, if and only if (i) a = 1 or a = 2, and (ii) b1− b2 + (2− a)b3 = 0.

(d) By the multiplication theorem for determinants, |B3| = |B|3, and since B is
a 3× 3 matrix, we have |−B| = (−1)3|B| = −|B|. Since B3 = −B, it follows that
|B|3 = −|B|, which gives

|B|(|B|2 + 1) = 0.

Therefore |B| = 0, and so B cannot have an inverse.

Exam problem 41

(a) f ′
1 = ex+y + ex−y − 3

2 , f ′
2 = ex+y − ex−y − 1

2 ,

f ′′
11 = ex+y + ex−y, f ′′

12 = ex+y − ex−y, f ′′
22 = ex+y + ex−y.

(b) We search for stationary points of f :

f ′
1(x, y) = 0 ⇐⇒ ex+y + ex−y = 3

2 (1)
f ′
2(x, y) = 0 ⇐⇒ ex+y − ex−y = 1

2 (2)

Adding equations (1) and (2) yields

2ex+y = 2 ⇐⇒ ex+y = 1 ⇐⇒ x + y = 0 ⇐⇒ y = −x.

Setting y = −x in (1) yields

1 + e2x = 3
2 ⇐⇒ e2x = 1

2 ⇐⇒ 2x = ln(1
2 ) = − ln 2 ⇐⇒ x = − 1

2 ln 2.

Hence, the only stationary point of f is (x0, y0) =
(− 1

2 ln 2, 1
2 ln 2

)
.

From the results in (a) we can see that f ′′
11 > 0, f ′′

22 > 0, and

f ′′
11f

′′
22 − (f ′′

12)
2 = (ex+y + ex−y)2 − (ex+y − ex−y)2

= e2x+2y + 2e2x + e2x−2y − (e2x+2y − 2e2x + e2x−2y) = 4e2x > 0,

for all x and y, so by Theorem 13.1.2 (13.1.1 in MA I), (x0, y0) is a global minimum
point for f .
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