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(For practical reasons some of the solutions may include problem parts that are
not on the problem list for this seminar.)

EMEA, 16.4.6 (= LA, 5.4.4)

This problem is an exercise in using some of the rules in Theorem 16.4.1 in EMEA
(LA: setning 5.1).

(a) This determinant is zero because the second column equals 2 times the first
column. We could also have used that the sum of the first and the second row
equals the third row.

(b) By adding the second column to the third, we get
∣∣∣∣∣∣
1 a b + c
1 b c + a
1 c a + b

∣∣∣∣∣∣ =

∣∣∣∣∣∣
1 a a + b + c
1 b a + b + c
1 c a + b + c

∣∣∣∣∣∣ = 0.

The last equality follows because the third column is proportional to the first.

(c) There is a common factor x − y in the first row, so we get
∣∣∣∣∣∣
x − y x − y x2 − y2

1 1 x + y
y 1 x

∣∣∣∣∣∣ = (x − y)

∣∣∣∣∣∣
1 1 x + y
1 1 x + y
y 1 x

∣∣∣∣∣∣ = 0,

since the new determinant has two equal rows.

EMEA, 16.4.10 (= LA, 5.4.8)

(a) The multiplication rule for determinants, part G of Theorem 16.4.1 on page
602 in EMEA (part 8 of Theorem 5.1 on page 98 i LA), shows that we must have

|A|2 = |A2| = |I| = 1,

and therefore |A| equals 1 or −1.

(b) Direct matrix multiplication shows that the square of each of the two matrices
is I2.

(c) We have

(I − A)(I + A) = II − AI + IA − AA = I − A + A − A2 = I − A2,

and this expression equals 0 if and only if A2 = I.
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Exam problem 5

(a) Expansion along the first row gives

|A| =

∣∣∣∣∣∣
a b 0

−b a b
0 −b a

∣∣∣∣∣∣ = a

∣∣∣∣ a b
−b a

∣∣∣∣ − b

∣∣∣∣ −b b
0 a

∣∣∣∣ = a(a2 + b2) − b(−ab) = a3 + 2ab2.

Matrix multiplication gives

AA =

⎛
⎝ a2 − b2 2ab b2

−2ab a2 − 2b2 2ab
b2 −2ab a2 − b2

⎞
⎠ .

(b) We have

(C′BC)′ = C′B′(C′)′ = C′(−B)C = −C′BC.

(c) Since A′ =

⎛
⎝ a −b 0

b a −b
0 b a

⎞
⎠, the matrix A is skew-symmetric, that is, A′ =

−A, if and only if a = 0.

Exam problem 95

(a) Cofactor expansion along the first column gives

|A3(t)| =

∣∣∣∣∣∣
3 − t −4 2

1 −t 0
0 1 −t

∣∣∣∣∣∣ = (3 − t)(−t)2 − 1
∣∣∣∣ −4 2

1 −t

∣∣∣∣
= t2(3 − t) − (4t − 2) = −t3 + 3t2 − 4t + 2.

To find |A4(t, a)| we expand along the last column:

|A4(t, a)| =

∣∣∣∣∣∣∣

3 − t −4 2 a
1 −t 0 0
0 1 −t 0
0 0 1 −t

∣∣∣∣∣∣∣
= −a

∣∣∣∣∣∣
1 −t 0
0 1 −t
0 0 1

∣∣∣∣∣∣ + (−t)|A3(t)|

= −a + (−t)(−t3 + 3t2 − 4t + 2) = t4 − 3t3 + 4t2 − 2t − a.

(b) From the last two equations we get x3 = x2 − b3 and x2 = x1 − b2. Therefore
x3 = x1 − b2 − b3. Inserted into the first equation this yields 2x1 − 4x1 + 4b2 +
2x1 − 2b2 − 2b3 = b1, or

(∗) b1 − 2b2 + 2b3 = 0.

Thus, (∗) is a necessary condition for the system to have solutions. On the other
hand, if (∗) is satisfied, then we can choose arbitrary values for x1, and with
x2 = a1 − b2, x3 = x1 − b2 − b = 0, it follows that the system has solutions with
one degree of freedom.
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(Alternative method: Gaussian elimination. By means of elementary opera-
tions on the augmented coefficient matrix (“den utvidede koeffisientmatrisen”) we
get ⎛

⎜⎝
2 −4 2 b1

1 −1 0 b2

0 1 −1 b3

⎞
⎟⎠ ∼

⎛
⎜⎝

1 0 −1 − 1
2b1 + 2b2

0 1 −1 − 1
2b1 + b2

0 0 0 1
2b1 − b2 + b3

⎞
⎟⎠

The conclusion follows.)

(c) We shall use the fact that a matrix A has an inverse if and only if |A| �= 0.
In particular, we must have |P| �= 0.

(i) |P2| = |P|2 �= 0, so P2 does have an inverse.

(ii) The determinant of P + P = 2P is |2P| = 2n|P|, if P is n × n. Then
|P + P| �= 0, so P + P has an inverse. (Alternative solution: (2P)( 1

2P
−1) =

2 · 1
2PP−1 = I, so 1

2P
−1 is the inverse of 2P = P + P.)

(iii) |P′| = |P| �= 0, so P′ has an inverse. (It is also a well-known fact that
(P′)−1 = (P−1)′.)

(iv) The matrix P + P′ need not have an inverse even if P has and inverse.

Let P =
(

a b
c d

)
. Then P + P′ =

(
a b
c d

)
+

(
a c
b d

)
=

(
2a b + c

b + c 2d

)
. The

matrix P has an inverse if the determinant |P| = ad− bc is different from 0. Now,
|P + P′| = 4ad − (b + c)2, so in order to get an example of an invertible matrix P
such that P + P′ is not invertible, it suffices to find numbers a, b, c, and d such
that ad − bc �= 0 and 4ad − (b + c)2 = 0.

Example: Let P =
(

1 0
2 1

)
. Then |P| = 1 �= 0, but |P + P′| =

∣∣∣∣ 2 2
2 2

∣∣∣∣ = 0.

Exam problem 121

(a) With the Lagrangian L(x, y) = exy−λ[(x−1)2+y2−12] we find the necessary
first-order conditions,

(1) L′
x = exy − 2λ(x − 1) = 0

(2) L′
y = ex − 2λy = 0

(3) (x − 1)2 + y2 = 12

We can see from (2) that y �= 0 and λ = ex/2y. If we substitute this expression
for λ in (1), we get

exy − 2
ex

2y
(x − 1) = 0, which yields y2 = x − 1.

Substituting this expression for y in (3), we get x2 − x − 12 = 0, so x = −3 or
x = 4. Since x = y2 + 1 ≥ 1, only x = 4 is possible. Then y2 = 3, so y = ±√

3.
Hence, the only points that satisfy the necessary conditions, (1)–(3), are (4, ±√

3 ).
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Since the function f(x, y) = exy is continuous and the circle

S =
{

(x, y) : (x − 1)2 + y2 = 12
}

is a closed and bounded set, the extreme value theorem shows that f(x, y) attains
a maximum value over S. The function values at the points we have found are

f(4, ±
√

3 ) = ±e4
√

3,

and this shows that x = 4, y =
√

3 solves the problem, with fmaks = e4
√

3 and
λ = ex/2y = 1

6e4
√

3.

(b) The change in the maximum value of f is Δfmaks ≈ λ · 0.03 = e4
√

3/200.
Thus the percentage change is

Δfmaks

fmaks
· 100 % ≈ e4

√
3
/
200

e4
√

3
· 100 % = 0.5 %.

Problem 6

(a) Cofactor expansion along the first row yields

|At| =

∣∣∣∣∣∣
1 t 0

−2 −2 −1
0 1 t

∣∣∣∣∣∣ =
∣∣∣∣ −2 −1

1 t

∣∣∣∣ − t

∣∣∣∣ −2 −1
0 t

∣∣∣∣ = −2t + 1 + 2t2

The equation 2t2−2t+1 = 0 has no solutions. (In fact, 2t2−2t+1 = t2+(t−1)2 > 0
for all t.) Hence, |At| �= 0 for all t, and it follows that At has an inverse for every
value of t.

(b) Matrix multiplication yields

(At)2 = AtAt =

⎛
⎝ 1 − 2t −t −t

2 3 − 2t 2 − t
−2 t − 2 t2 − 1

⎞
⎠

(At)3 = (At)2At =

⎛
⎝ 1 2t − 2t2 t − t2

4t − 4 5t − 4 −t2 + 4t − 3
2 − 2t t2 − 4t + 3 t3 − 2t + 2

⎞
⎠

If (At)3 = I3, then every element on the main diagonal must be equal to 1. In
particular, 5t − 4 = 1, and therefore t = 1. Using the expression for (At)3 that
we found above, it is easy to see that (A1)3 is indeed equal to I3. It is clear that
t = 1 is the only solution.

(c) Since I3 = (A1)3 = A1(A1)2, we have

(A1)−1 = (A1)2 =

⎛
⎝ −1 −1 −1

2 1 1
−2 −1 0

⎞
⎠
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(d) Since A is a square matrix and A′A = I, it follows that A′ = A−1, and
therefore AA′ = I as well.

To show that A′B−1A is the inverse of A′BA, it suffices to prove that their
product is the identity matrix. We get

(A′B−1A)(A′BA) = A′B−1AA′BA = A′B−1IBA

= A′B−1BA = A′IA = A′A = I.

Alternatively, we could use the formula (C1C2C3)−1 = (C3)−1(C2)−1(C1)−1 for
the inverse of a product of three matrices, together with the fact that A′ = A−1:

(A′BA)−1 = (A−1BA)−1 = A−1B−1(A−1)−1 = A′B−1A.
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