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Exam problem 31

f(tx1, tx2) = 5(tx1)4 + 6(tx1)(tx2)3 = 5t4x4
1 + 6tx1t

3x3
2(a) (i)

= t4(tx4
1 + 6x1x

3
2 = t4f(x1, x2),

so f is homogeneous of degree 4.

(ii) If F were homogeneous of degree k, then

F (t, t, t) = F (t · 1, t · 1, t · 1) = tkF (1, 1, 1),

but F (t, t, t) = e3t and tkF (1, 1, 1) = tke3, which is not the same as e3t for any k.
(The equality would have to hold for some constant k, and for all t > 0.)

(iii) G(tK, tL, tM, tN) = · · · = G(K, L, M, N) = t0G(K, L, M, N), so G is homo-
geneous of degree 0.

x1f
′
1(x1, x2) + x2f

′
2(x1, x2) = x1(20x3

1 + 6x3
2) + x218x1x

2
2(b)

= 20x4
1 + 24x1x

3
2 = 4f(x1, x2),

in accordance with Euler’s theorem.

Exam problem 57

(a) Since

f(tx, ty) = (ty)3 + 3(tx)2(ty) = t3y3 + 3t3x2y = t3f(x, y),

f is homogeneous of degree 3. It follows that the desired constant is k = 3,
cf. Euler’s theorem.

Of course, we could also calculate directly:

xf ′
1(x, y) + yf ′

2(x, y) = x · 6xy + y(3y2 + 3x2) = 3y3 + 9x2y = 3f(x, y).

(b) For every value of x, the function F (x, y) = y3 + 3x2y is strictly increasing
with respect to y, with F (x, y) → −∞ as y → −∞ and F (x, y) → ∞ as y → ∞.
It follows that the equation F (x, y) = −13 defines y as a function of x over the
entire real line.

Implicit differentiation gives

3y2y′ + 6xy + 3x2y′ = 0,

y′ = − 6xy

3x2 + 3y2 = − 2xy

x2 + y2 .
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This is the slope of the tangent to the curve at the point (x, y). With (x, y) =
(2,−1) we get y′ = 4/5. Hence, the tangent to the curve at the point (2,−1) is
given by the equation

y − (−1) =
4
5
(x− 2), that is, y =

4
5
x− 13

5
.

y

-3

-2

-1

1

x
-3 -2 -1 1 2 3

(2, −1)

y3 + 3x2y = −13

Exam problem 57. The level curve f(x, y) = −13
together with its tangent at (2, −1).

(c) From y′ =
−2xy

x2 + y2 we get

y′′ =
(−2y − 2xy′)(x2 + y2)− (−2xy)(2x + 2yy′)

(x2 + y2)2
.

At the point (2,−1) we have y′ = 4/5 and

y′′ =

(
2− 16

5

)
(4 + 1)− 4

(
4− 8

5 )
(4 + 1)2

=
(10− 16)− (16− 32

5 )
25

= − 78
125

< 0.

Thus, y is a concave function of x around this point.

(d) Since y(y2 + 3x2) = −13, we have (x, y) �= (0, 0), and therefore

y = − 13
y2 + 3x2 < 0.

This shows that all points on the curve lie below the x-axis.
In part (b) we showed that

y′ = − 2xy

x2 + y2 =
( −2y

x2 + y2

)
· x.

Since
−2y

x2 + y2 > 0, we have

y′ < 0 for x < 0 and y′ > 0 for x > 0.
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This means that y decreases when x increases in (−∞, 0], and increases when
x increases in [0,∞). Hence, y attains its least value, ymin, for x = 0, and so
(ymin)3 + 0 = −13, which yields ymin = 3√−13 = − 3√13 .

(Alternatively we could try to solve the problem

minimize y subject to y3 + 3x2y = −13 (∗)

by Lagrange’s method. The Lagrangian is

L(x, y) = y − λ(y3 + 3x2y + 13),

and the equations L′
1(x, y) = L′

2(x, y) = 0 give

−6λxy = 0, (1)

1 − 3λy2 − 3λx2 = 0. (2)

We can see from equation (2) that we must have λ �= 0. Moreover, we showed above that
y < 0. Hence, from (1) we get x = 0, and the constraint yields y = − 3√13 . This is the
only possible solution of the problem (∗). But it then remains to show that it really is a
solution of the problem.)

Exam problem 58

(a) Cofactor expansion along the first row yields∣∣∣∣∣∣
−2 4 −t
−3 1 t

t− 2 −7 4

∣∣∣∣∣∣ = −2
∣∣∣∣ 1 t
−7 4

∣∣∣∣− 4
∣∣∣∣ −3 t
t− 2 4

∣∣∣∣− t

∣∣∣∣ −3 1
t− 2 −7

∣∣∣∣
= −2(4 + 7t)− 4(−12− t2 + 2t)− t(21− t + 2) = 5t2 − 45t + 40.

(b) The determinant of the coefficient matrix for the equation system is precisely
the determinant that we calculated in part (a). Hence,

the system has a unique solution ⇔ 5t2 − 45t + 40 �= 0 ⇔ t �= 1 and t �= 8 .

(Here we used the fact that 5t2 − 45t + 40 = 5(t− 1)(t− 8).)

(c) With t = 8 and y = 3 we get the equations

−2x− 8z = −8
−3x + 8z = −32

6x + 4z = 44

The solution of this system is x = 8, z = −1. (We can find this solution by using
only the first two equations, but we must remember to check that it satisfies the
third equation as well.)

(d) We sant to show that (I + sB)(I + B) = I for a suitable value of s. If we use
the fact that B2 = 3B, we get (I+ sB)(I+B) = I+ sB+B+ sB2 = I+B+4sB.
The last expression equals I if and only if 4sB = −B. This condition is satisfied
if s = −1/4, and it follows that (I + B)−1 = I− 1

4B.
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Exam problem 90

(a) The derivative of f is

f ′(x) = 4xe−x2−a + (2x2 + a)(−2x)e−x2−a = 4x(1− 1
2a− x2)e−x2−a .

The stationary points are where f ′(x) = 0, i.e., where x = 0 or x2 = 1− 1
2a. The

latter equation has solutions only if a ≤ 2. Hence:
For a < 2, there are three stationary points,

x1 = 0, x2 = −
√

1− a/2 , x3 =
√

1− a/2 .

For a ≥ 2, there is only one stationary point, namely x1 = 0.

(b) f(−x) = (2(−x)2 + a)e−(−x)2−a = (2x2 + a)e−x2−a = f(x) for all x, so the
graph of f is symmetric about the y-axis.

Since lim
x→∞ u/eu = 0, we get

lim
x→∞ f(x) = lim

x→∞

(
2

x2

ex2 +
a

ex2

)
e−a = 0.

Because f(−x) = f(x) we also get lim
x→−∞ f(x) = 0.

For a ≥ 2 we have f ′(x) > 0 if x < 0 and f ′(x) < 0 if x > 0. Therefore x = 0
is a global maximum point for f , and M(a) = fmax = f(0) = ae−a.

For a < 2, f ′(x) has the same sign as x(1− 1
2a− x2) = −x(x− x2)(x− x3).

It follows that

f ′(x)

⎧⎪⎨
⎪⎩

> 0 if x < x2
< 0 if x2 < x < 0
> 0 if 0 < x < x3
< 0 if x3 < x

We have x2 = −x3, so by symmetry, f(x2) = f(x3). Therefore f(x) attains its
maximum at x2 and x3, and we get M(a) = f(x3) = 2e−1−a/2.

The figures show the graph of f in the two cases a = 0.6 and a = 2.5. Note
that the scales on the axes are different.

y

0.1
0.2
0.3
0.4
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0.7

x-2 -1 1 2

y

0.05
0.10
0.15
0.20
0.25
0.30

x-2 -1 1 2

The graph of f with a = 0.6 The graph of f with a = 2.5

M is obviously continuous in each of the intervals [0, 2) and (2,∞). The one-sided
limits of M(a) at a = 2 are

lim
a→2−

M(a) = lim
a→2−

2e−1−a/2 = 2e−2 and lim
a→2+

M(a) = lim
a→2+

ae−a = 2e−2.
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Since the two one-sided limits are equal, we have lima→2 M(a) = 2e−2 = M(2).
It follows that M is continuous at a = 2 as well.

Since M ′(a) < 0 both in [0, 2) and in (2,∞), M is strictly decreasing in both
[0, 2] and [2,∞), and M(a) has its greatest value when a = 0.

(d) We get

g′
1(x, y) = 4x(1− 1

2y − x2)e−x2−y, g′
2(x, y) = (1− y − 2x2)e−x2−y

The stationary points are the solutions of the equations

(1) x(1− 1
2y − x2) = 0 and (2) 1− y − 2x2 = 0

Equation (2) yields y = 1 − 2x2. If we substitute this expression for y in (1), we
get x · 1

2 = 0. Hence, (x, y) = (0, 1) is the only stationary point for g. The value
of g at this stationary point is g(0, 1) = e−1.

Now, g(x, y) is the same as f(x) with a = y. Thus, it follows from part (c)
that for all y ≥ 0 and all x we have g(x, y) ≤ M(y) ≤ M(0) = 2e−1. Here, M(0)
is the maximum value of f(x) when a = 0, so gmax = M(0) = f(±x3) = f(±1) =
g(±1, 0).

Exam problem 98

(a) The determinant of At is

|At| =
∣∣∣∣∣∣
1 0 t
2 1 t
0 1 1

∣∣∣∣∣∣ =

∣∣∣∣∣∣
1 −t t
2 1− t t
0 0 1

∣∣∣∣∣∣ (by subtracting column 3 from column 2)

=
∣∣∣∣ 1 −t
2 1− t

∣∣∣∣ = 1− t + 2t = t + 1.

It follows that At has an inverse ⇐⇒ t �= −1.

(b) A straightforward calculation yields

I3 −BAt =

⎛
⎝ 1 0 0

0 1 0
0 0 1

⎞
⎠−

⎛
⎝ 1 0 0

0 0 1
0 1 0

⎞
⎠

⎛
⎝ 1 0 t

2 1 t
0 1 1

⎞
⎠

=

⎛
⎝ 1 0 0

0 1 0
0 0 1

⎞
⎠−

⎛
⎝ 1 0 t

0 1 1
2 1 t

⎞
⎠ =

⎛
⎝ 0 0 −t

0 0 −1
−2 −1 1− t

⎞
⎠

The determinant of this matrix

|I3 −BAt| =
∣∣∣∣∣∣

0 0 −t
0 0 −1
−2 −1 1− t

∣∣∣∣∣∣ = 0.

(Use cofactor expansion along a row or a column, or note that columns number 1
and 2 are proportional, or add −t times the second row to the first row to get a

5

Mat2v09sem09svar 26.3.2009 946



row with only zeros.) It follows that I3 − BAt does not have an inverse for any
value of t.

Note: The determinant |I3 −BAt| does not equal |I3| − |BAt| ! The determinant
of a sum or difference of two matrices usually does not equal the sum or difference
of the two determinants.

The equation

(1) B + XA−1
1 = A−1

1

is equivalent to

(2) XA−1
1 = A−1

1 −B.

Multiplying from the right by A1 yields

(3) X = I3 −BA1 =

⎛
⎝ 0 0 −1

0 0 −1
−2 −1 0

⎞
⎠

(Let t = 1 in the expression for I3 −BAt that we found above.)
Note that we are not finished yet. We have shown that (1) ⇔ (2) ⇒ (3), so

we know that if X is a solution of (1), then X must be the matrix that we found
in (3). But we do not know for sure that (1) really has a solution.

One way to find out is to check the answer, that is, inserting the matrix X
that we have found into (1). (It turns out that X is indeed a solution.)

Alternatively we can use the fact that A1 has an inverse, and right-multiply
by A−1

1 on both sides of equation (3). We then get

(3) ⇒ XA−1
1 = (I3 −BA1)A−1

1 = A−1
1 −B,

i.e. (3)⇒ (2). It follows that (3)⇔ (2), and then (3)⇔ (1) as well.

(c) It is clear that Y =
(

y11 y12 y13
y21 y22 y23

)
must be a 2× 3 matrix such that

Y

⎛
⎝ 1 2 −3

0 1 0
0 0 1

⎞
⎠ =

(
1 2 −1
−1 0 4

)
.

The matrix equation

(
y11 y12 y13
y21 y22 y23

) ⎛
⎝ 1 2 −3

0 1 0
0 0 1

⎞
⎠ =

(
1 2 −1
−1 0 4

)
,

leads to the following equations:

y11 = 1,

y21 = −1,

2y11 + y12 = 2,

2y21 + y22 = 0,

−3y11 + y13 = −1,

−3y21 + y23 = 4,
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We get

y11 = 1, y12 = 2− 2y11 = 0, y13 = 3y11 + 1 = 2,

and in a similar fashion y21 = −1, y22 = 2 and y23 = 1. Thus the matrix Y is

Y =
(

1 0 2
−1 2 1

)
.

Alternatively we could have found the inverse of the matrix C =

⎛
⎝ 1 2 −3

0 1 0
0 0 1

⎞
⎠

and used

YC =
(

1 2 −1
−1 0 4

)
⇐⇒ Y =

(
1 2 −1
−1 0 4

)
C−1.

C does have an inverse, because |C| = −1 �= 0, and a little work shows that

C−1 =

⎛
⎝ 1 −2 3

0 1 0
0 0 1

⎞
⎠ .

Solutions of the extra problems:

Exam problem 66

(a) The determinant of the equation system is

∣∣∣∣∣∣
1 1 −2
3 −1 a
−1 a −4

∣∣∣∣∣∣ = −a2 − 7a + 18 = −(a + 9)(a− 2).

We can tell from this that the system has exactly one solution when a �= −9 and
a �= 2.

If we let a = −9 and use Gaussian elimination, we get

⎛
⎝ 1 1 −2 −2

3 −1 −9 −3
−1 −9 −4 8

⎞
⎠ −3 1
←
←

∼
⎛
⎝ 1 1 −2 −2

0 −4 −3 3
0 −8 −6 6

⎞
⎠ −2 −1/4
←

∼
⎛
⎝ 1 1 −2 −2

0 1 3/4 −3/4
0 0 0 0

⎞
⎠ ,

and this system obviously has solutions with one degree of freedom.
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Similarly, with a = 2 we get
⎛
⎝ 1 1 −2 9

3 −1 2 −3
−1 2 −4 8

⎞
⎠−3 1
←
←

∼
⎛
⎝ 1 1 −2 9

0 −4 8 −30
0 3 −6 17

⎞
⎠ 3/4
←

∼
⎛
⎝ 1 1 −2 9

0 −4 8 −30
0 0 0 −11/2

⎞
⎠ ,

which shows that in this case the system is inconsistent (“selvmotsigende”), i.e. it
has no solutions at all.

Exam problem 118

(a) Introduce u = 1+ e
√

x as a new variable. Then u > 0 and du =
1

2
√

x
· e

√
x dx,

so the integral equals
∫

2 du

u
= 2 lnu + C = 2 ln(1 + e

√
x) + C.

(b) Use integration by parts with f(x) = lnx, g′(x) =
√

x. Formula (9.5.1) in
EMEA (formula (10.6.1) in MA I) yields

∫ e2

1

√
x lnx dx =

e2

1

2
3
x3/2 lnx−

∫ e2

1

2
3
x3/2 · 1

x
dx

=
e2

1

2
3
x

2
3 lnx−

e2

1

4
9
· x3/2 =

8
9
e3 +

4
9

.
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