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EMEA, 12.8.7 (= 12.7.7 in the 1st ed. = 12.3.6 in MA I)

We shall use formula (3) on page 445 (page 444 in the 1st. ed.; formula (4) on
page 434 in MA I) to find an equation for the tangent plane.

(a) Here, ∂z/∂x = 2x and ∂z/∂y = 2y. At the point (1, 2, 5), we get ∂z/∂y = 2
and ∂z/∂x = 4, so the tangent plane at this point has the equation

z − 5 = 2(x − 1) + 4(y − 5) ⇐⇒ z = 2x + 4y − 5.

(b) From z = (y − x2)(y − 2x2) = y2 − 3x2y + 2x4 we get ∂z/∂x = −6xy + 8x3

and ∂z/∂y = 2y − 3x2. Thus, at (1, 3, 2) we have ∂z/∂x = −10 and ∂z/∂y = 3.
The tangent plane is given by the equation

z − 2 = −10(x − 1) + 3(y − 3) ⇐⇒ z = −10x + 3y + 3.

EMEA, 12.9.5 (= MA I, 12.4.6)

The equation d(UeU ) = d(x
√

y) implies

eU dU + UeU dU =
√

y dx +
x

2
√

y
dy .

Solving for dU yields

dU =

√
y

eU + UeU
dx +

x

(eU + UeU )2
√

y
dy .

EMEA, 15.9.2 ((a),(b),(c) = LA, 2.6.2(a),(c),(d))

(a) The line L has the parameter representation

x1 = −t + 2, x2 = 2t − 1, x3 = t + 3.

If we let t = 0, we get precisely the point a = (2,−1, 3) on L.
If the point (1, 1, 1) were to lie on L, there must exist a t such that

−t + 2 = 1, 2t − 1 = 1, t + 3 = 1.

But the first of these equations gives t = 1, which is not a solution of the last
equation. Thus (1, 1, 1) cannot lie on L.
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(b) To an arbitrary t there corresponds the point

x = (2,−1, 3) + (−t, 2t, t) = a + tv,

where v = (−1, 2, 1). Thus, the vector v is a direction vector for the line L.

(c) The plane P that passes through a and is perpendicular to L, has v as a
normal vector. (Every direction vector for L is a normal vector for P and vice
versa.) Therefore P is given by the equation

v · x = v · a,

which gives
−x1 + 2x2 + x3 = −1.

(d) The point of intersection between L and the plane 3x1 +5x2 −x3 = 6 is given
by that parameter value t for which the point (−t + 2, 2t − 1, t + 3) on L satisfies
the equation for the plane, that is

3(−t + 2) + 5(2t − 1) − (t + 3) = 6.

This equation gives t = 4/3, and we get the point (2/3, 5/3, 13/3).

EMEA, 15.9.5 (= LA, 2.6.4)

(a) With the components of a as x, y, and z, respectively, the equation for the
plane is satisfied.

(b) Let n = (−1, 2, 3). Then n is a normal vector to the plane. In fact, the
equation for the plane can be written as n · x = n · a, where x = (x, y, z). Then
the normal to the plane at the point a is the straight line through a with n as a
direction vector.

A parametric representation of this line can be given as x = a + tn, i.e.,

(x, y, z) = (−2, 1,−1) + t(−1, 2, 3)
or, equivalently,

x = −2 − t, y = 1 + 2t, z = −1 + 3t.

Exam problem 44

(a) Using the chain rule, we get

f ′
x(x, y) = ye−x/y + xye−x/y ·

(
− ∂

∂x

(x

y

))

= ye−x/y + xye−x/y
(
−1

y

)
= (y − x)e−x/y

f ′
y(x, y) = xe−x/y + xye−x/y ·

(
− ∂

∂y

(x

y

))

= xe−x/y + xye−x/y · x

y2 =
(
x +

x2

y

)
e−x/y
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(b) If we let u = −x/y, we get

Elx f(x, y) = Elx x + Elx y + Elx eu = 1 + 0 + Elu eu · Elx u

= 1 + u(Elx x − Elx y) = 1 + u(1 − 0) = 1 + u = 1 − x

y

Ely f(x, y) = Ely x + Ely y + Elu eu · Ely u

= 0 + 1 + u(0 − 1) = 1 − u = 1 +
x

y

Check:

Elx f(x, y) =
x

f(x, y)
· f ′

x(x, y) =
x

xye−x/y
(y − x)e−x/y =

y − x

y
= 1 − x

y

Ely f(x, y) =
y

f(x, y)
· f ′

y(x, y) =
y

xye−x/y

(
x +

x2

y

)
e−x/y = 1 +

x

y

(c) The function f has first-order partial derivatives throughout its domain of
definition, and this domain contains none of its boundary points. (The boundary
of the domain consists of the nonnegative parts of the coordinate axes. Draw a
picture!) Hence any maximum point of f must be a stationary point of f . But f
has no stationary points, because f ′

y(x, y) = (x + x2/y)e−x/y > 0 when x > 0 and
y > 0. Therefore f has no maximum point, not even a local one.

We can also see directly that we can get as large function values as we like:
For t > 0, f(t, t) = t2 · e−1, which tends to ∞ as t → ∞.

(d) We shall use Lagrange’s method to maximize f(x, y) subject to the constraint
x + y = c. With the Lagrangian

L(x, y) = f(x, y) − λ(x + y − c) = xye−x/y − λ(x + y − c)

we get the first-order conditions

L′
x(x, y) = f ′

x(x, y) − λ = 0,

L′
y(x, y) = f ′

y(x, y) − λ = 0,

which yield f ′
x(x, y) = f ′

y(x, y). According to part (a), we must then have

(∗) y − x = x +
x2

y
, that is, (y − x)y = xy + x2.

The constraint yields y = c − x, and if we substitute this expression for y in (∗)
and “tidy up” the equation, we get

2x2 − 4cx + c2 = 0.

This quadratic equation has the solutions

x =
4c ± √

16c2 − 8c2

4
= · · · = c ±

√
2 c

2
.
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Since we must have 0 < x < c, only x = x∗ = (1 − 1
2

√
2 )c is usable. The

corresponding value of y is y∗ = c − x∗ = 1
2

√
2 c. Hence, the maximum value of

f(x, y) subject to the given constraint is

f(x∗, y∗) = x∗y∗e−x∗/y∗
=

√
2 − 1
2

e1−√
2 c2.

Exam problem 79

(a) Since the elasticity of a product is the sum of elasticities of each factor, we
have

(∗)
Elx ex−y + Elx ln(x + z − 1) = Elx

√
xy

Elx x2 + Elx y3 + Elx z = 0.

Using the rules for elasticities (see Section 5.13 in MA I or Problem 7.7.10 in
EMEA), we get

Elx ex−y = Elx(ex/ey) = Elx ex − Elx ey = x − y Elx y,

Elx ln(x + z − 1) = Elx lnu = Elu lnu Elx u =
1

lnu

xElx x + z Elx z

x + z − 1

=
1

ln(x + z − 1)
x + z Elx z

x + z − 1
, with u = x + z − 1,

Elx
√

xy = Elx(xy)1/2 =
1
2

Elx(xy) =
1
2
(1 + Elx y),

Elx x2 = 2, Elx y3 = 3 Elx y.

Inserting this into the equation system (∗), we get

x − y Elx y +
x + z Elx z

(x + z − 1) ln(x + z − 1)
=

1
2

+
1
2

Elx y

2 + 3 Elx y + Elx z = 0.

In particular, for x = 1, y = 1, and z = e we have

1 − Elx y +
1 + e Elx z

e
=

1
2

+
1
2

Elx y

2 + 3 Elx y + Elx z = 0.

This leads to the equation system

−3
2

Elx y + Elx z = −1
2

− 1
e

3 Elx y + Elx z = −2,

with the solution

Elx y =
2
9e

− 1
3

≈ −0.25158, Elx z = −1 − 2
3e

≈ −1.24525.
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(b) If x increases from 1 to 1.1, i.e. by 10 %, then y will decrease by approximately
2.5 % and z will decrease by about 12.5 %.

(These percentages are only approximations to the real values. Numerical solution
of the equation system in the problem yields y ≈ 0.977730 and z ≈ 2.403546 ≈
0.884215e for x = 1.1. This corresponds to a reduction of approximately 2.2270 %
for y and 11.5785 % for z.)

Exam problem 108

|A| =

∣∣∣∣∣∣
q −1 q − 2
1 −p 2 − p
2 −1 0

∣∣∣∣∣∣
(1)
=

∣∣∣∣∣∣
q − 2 −1 q − 2
1 − 2p −p 2 − p

0 −1 0

∣∣∣∣∣∣(a)

(2)
= (−1)(−1)

∣∣∣∣ q − 2 q − 2
1 − 2p 2 − p

∣∣∣∣
= (q − 2)(2 − p) − (q − 2)(1 − 2p) = (q − 2)(p + 1).

Equality
(1)
= comes from adding 2 times the second column to the first column, and

we get
(2)
= by cofactor expansion along the last row.

Straightforward matrix multiplication gives

AE =

⎛
⎝ q −1 q − 2

1 −p 2 − p
2 −1 0

⎞
⎠

⎛
⎝ 1 1 1

1 1 1
1 1 1

⎞
⎠ =

⎛
⎝ 2q − 3 2q − 3 2q − 3

3 − 2p 3 − 2p 3 − 2p
1 1 1

⎞
⎠ .

(All columns in the product matrix are equal, and that is because all columns in
the matrix E are equal.)

Further,

|A + E| =

∣∣∣∣∣∣
q + 1 0 q − 1

2 1 − p 3 − p
3 0 1

∣∣∣∣∣∣
(3)
= (1 − p)

∣∣∣∣ q + 1 q − 1
3 1

∣∣∣∣
= (1 − p)[(q + 1) − 3(q − 1)] = (1 − p)(4 − 2q) = 2(1 − p)(2 − q),

where we get equality
(3)
= by cofactor expansion along the second column.

(b) A + E has an inverse ⇐⇒ |A + E| 	= 0 ⇐⇒ p 	= 1 and q 	= 2.
Since the columns of E are all equal, we have |E| = 0. Then for all 3 × 3

matrices B we also have |BE| = |B| |E| = 0. Therefore BE cannot have an inverse.

(c) The last equation gives y = 2x. Hence the system has a solution (unique
solution) if and only if

(q − 2)x = q − 2 (1)
(1 − 2p)x = 2 − p (2)

has a solution (unique solution). If p = 1/2, then (2) becomes 0 = 2 − p = 3/2,
which is impossible. If p 	= 1/2, then (2) yields a unique value for x, namely
x = (2 − p)/(1 − 2p).
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It remains to be seen if this value also satisfies (1), that is, (q − 2)(x− 1) = 0.
If q = 2, there is no problem. If q 	= 2, then we must have x = 1, and this implies
2 − p = 1 − 2p, which is equivalent to p = −1.

Putting all this together, we have the following:
⎧⎪⎨
⎪⎩

p = 1/2 : No solution.
p 	= 1/2 and q = 2 : Unique solution.
p 	= −1 and q 	= 2 : No solution.
p = −1 : Unique solution.

Solutions of the extra problems:

Exam problem 62

(a) The determinant of Aa is

|Aa| =

∣∣∣∣∣∣
1 −a −a

−a 1 −a
−a −a 1

∣∣∣∣∣∣ = 1
∣∣∣∣ 1 −a
−a 1

∣∣∣∣ − (−a)
∣∣∣∣ −a −a
−a 1

∣∣∣∣ + (−a)
∣∣∣∣ −a 1
−a −a

∣∣∣∣
= −2a3 − 3a2 + 1.

It is easy to see that −2a3 − 3a2 + 1 = 0 for a = 1/2. Hence, a − 1/2 is a factor
in −2a3 − 3a2 + 1. Polynomial division gives

(−2a3 − 3a2 + 1) ÷ (a − 1/2) = −2a2 − 4a − 2 = −2(a + 1)2,

so |Aa| = −2(a + 1)2(a − 1/2), and

|Aa| 	= 0 ⇐⇒ a 	= −1 and a 	= 1/2.

Thus, Aa has an inverse precisely when a is different from −1 and 1/2.

Note: In English, division of a by b is usually written as a ÷ b rather than a : b.

(b) Let B = k

⎛
⎝ 1 − a a a

a 1 − a a
a a 1 − a

⎞
⎠. The product of Aa and B is

AaB =

⎛
⎝ 1 −a −a

−a 1 −a
−a −a 1

⎞
⎠ · k

⎛
⎝ 1 − a a a

a 1 − a a
a a 1 − a

⎞
⎠

= k

⎛
⎝ 1 − a − 2a2 0 0

0 1 − a − 2a2 0
0 0 1 − a − 2a2

⎞
⎠

= k(1 − a − 2a2)

⎛
⎝ 1 0 0

0 1 0
0 0 1

⎞
⎠

= k(1 − a − 2a2) I3 = k(1 + a)(1 − 2a) I3.
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This shows that if we choose k = 1/(1−a− 2a2), then B is the inverse of Aa, and
this works for all values of a except −1 and 1/2.

(c) Let x = (x1, x2, x3)′. Then

A−1
a x = k

⎛
⎝ 1 − a a a

a 1 − a a
a a 1 − a

⎞
⎠

⎛
⎝ x1

x2
x3

⎞
⎠ = k

⎛
⎝ (1 − a)x1 + ax2 + ax3

ax1 + (1 − a)x2 + ax3
ax1 + ax2 + (1 − a)x3

⎞
⎠ .

If 0 < a < 1/2, then k is positive, and then all components of A−1
a x are positive

if the components x1, x2, and x3 of x are positive.
(Actually, it is sufficient to note that the elements of A−1

a are positive when
a ∈ (0, 1/2). Then it follows directly from the definition of matrix multiplication
that all components of A−1

a x will be positive when the components of x are posi-
tive. Note that if a ∈ (1/2, 1), then all elements of Aa will be negative, since k < 0
for these values of a.)

Exam problem 14

The given differential equation

tẋ + (2 − t)x = e2t, t > 0 (∗)

is equivalent to

ẋ + a(t)x = b(t), where a(t) =
2 − t

t
=

2
t

− 1, b(t) =
e2t

t
.

We choose an indefinite integral of a(t):

A(t) =
∫

a(t) dt = 2 ln t − t .

The general solution of (∗) is then

x(t) = e−A(t)
(∫

eA(t)b(t) dt + C

)
=

et

t2

(∫
t2e−t e2t

t
dt + C

)

=
et

t2

(∫
tet dt + C

)
=

et

t2
(tet − et + C) =

e2t(t − 1)
t2

+
Cet

t2
.

In particular, x(1) = Ce, so the particular solution with x(1) = 0 is

x(t) =
e2t(t − 1)

t2
.
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Exam problem 94

(a) Let
√

u = z. Then u = z2 and du = 2z dz, and we get
∫

1
(z2 − 1)z

2z dz = 2
∫

dz

z2 − 1
=

∫ [
1

z − 1
− 1

z + 1

]
dz

= ln |z − 1| − ln |z + 1| + C

= ln
∣∣∣∣z − 1
z + 1

∣∣∣∣ + C = ln
∣∣∣∣
√

u − 1√
u + 1

∣∣∣∣ + C.

(b) With w =
√

ey + 1 we get w2 = ey + 1 and 2w dw = ey dy = (w2 − 1) dy.
Hence,

∫
1√

ey + 1
dy =

∫
1
w

· 2w dw

w2 − 1
=

∫
2 dw

w2 − 1
=

∫ [
1

w − 1
− 1

w + 1

]
dw + C

= ln
∣∣∣∣w − 1
w + 1

∣∣∣∣ + C = ln
∣∣∣∣
√

ey + 1 − 1√
ey + 1 + 1

∣∣∣∣ + C.
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