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Exam problem 38
(a) Computing differentials, we get
vd(u?) 4+ u? dv — du = 32° dx + 6y* dy
e d(ux) = ydv + vdy,
that is,
2uv du + u® dv — du = 32° dx + 6y* dy
ue" dr + xe"* du = y dv + v dy.

If we substitute the values x =0, y =1, u = 2, and v = 1, we get

4ddu+4dv—du=6dy
2dx + 0du = dv + dy.
After a bit of calculation this yields

1
du:—gd:p—f—?ody and dv=2dx —dy

at the point P. Hence, at this point

ou 10 ov
—_—= = d — =2
oy 3 an or
(b) We get
8 10 8 10 2.8
Au~du=—=d —dy=—-014+—-(-0.2) = —— ~ —0.933
u u 3 T + 5 3 + 3 ( ) 3
and

Av~dv=2dxr—dy=2-0.1-(-0.2) =04.

Exam problem 54

The first- and second-order partial derivatives of f are

fi(z,y) =2z —y — 322,  fi(z,y) = 2y — =,

{Il(xay> =2 — bz, {/2(11;73/) =-1, él2(x7y) = -2
1
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The stationary points are the solutions of the equation system

20—y —32° =0

—2y—x=0
The last equation is equivalent to x = —2y, and if we use this in the first equation
we get
5 5 5
5y —12% = 0 —12y<y—l—ﬁ> —0 = y=0 cller y = ——.

It follows that f has two stationary points,

(1,41) = (0,0) og (x2,y2) = (5/6,-5/12).

In order to determine what kind of stationary point they are, we use the second-
derivative test and calculate the values of A = f{|(z,y), B = fi5(z,y) and C' =
25 (z,y) at each of the three stationary points. That gives the results

(x,9) A B C AC — B? Type of stat. point
(0,0) 2 -1 -2 -5 Saddle point
(2,-3) -3 -1 —2 5 Local max. point

Exam problem 141
(a) The derivatives of order one and two are

filz,y) =ze¥ — 2%, fi(z,y) = 32%e¥ — (14 3y)e?,

n(wy) =€’ =2z, flh(z,y) =we’,  fi(w,y) = 32°’ — (64 9y)e™.
(b) The stationary points are the solutions of the equation system
ze¥ — 22 =0 (1)
122V — (14 3y)e® =0 (2)
From (1) we get z =0 or e¥ = x.

A. If z = 0, then (2) gives y = —1/3, and we get the stationary point (z1,y1) =
B. If e¥ = x, then €% = 23, and (2) yields

127 - (143y)2®> =0 < 2°(3-1-3y)=0.

Since x = €Y, we must have z # 0, and therefore % -1-3y =0 < vy

—~1/6. Then 2 = e¥ = e~ '/%, and we have a second stationary point (z2,y2) =
(6_1/67__%)'
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We classify the stationary points by means of the second-derivative test.

(x,) A B C AC — B? Type of point
(0, _%) e—1/3 0 —3e ! —3e4/3 Saddle point
(e=1/8, _%) —e /6 | e=1/3 | _4e~1/2 3e—2/3 Local max. point

The function f has no global extreme points. Recall that a global extreme
point must also be a local extreme point, and the only local extreme point we have
here is the local maximum point (z2,%2), which gives the local maximum value
f(za,y2) = fe™ /6, —%) = %6_1/2. But this is not a global maximum value for f
because, for example, f(—1,0) = 2 > 1 > f(22,y2).

However, the easiest way to show that f has no global maximum or minimum
is to study

It is clear from the last expression that

lim f(xz,0) = —oc0 and lim f(z,0) = occ.

T—r 00 Tr—r—00

y=2(z—2)
f(l',y):—Q/?) /

Exam problem 141(c)

(¢) The slope of the level curve f(z,y) = —% at (2,0) is

_fi2,0)
f5(2,0)

The figure shows the level curve together with its tangent at (2,0).

3
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Exam problem 24

(a) To simplify the notation, we write u = —2x — 22 — 2y?. Then the first- and
second-order derivatives of f(x,y) = e~20-a"=20" — ou gre

filz,y) = =2(1+x)e",  fao(z,y) = —dye",
"

(@ y) = =2 +4(1+ )%, fia(z,y) = —2(1 +a)(—dy)e",

3o (w,y) = —de" + (—dy)’e".
Since €* > 0 for all u, the only stationary point is (xg,y9) = (—1,0). The corre-
sponding value of u is ug = —2x¢ — 3 —2y3 = 1. With A = f{}(z0,y0) = —2e%0 =
—2¢, B = fi5(x0,y0) = 0, and C = f5,(zo,y0) = —4e"® = —4e, we have A < 0
and AC' — B2 = 8¢? > 0. Therefore (—1,0) is a local maximum point for f.

Y A

(z,v)

e )

The set S in Problem 24(b)

(¢) The problem “maximize f(x,y) for (x,y) in S” has no solution in the interior
of S, since f has no stationary point there. The maximum is therefore attained
somewhere on the boundary of S.

It is clear from the expression for fi(z,y) that f(z,y) is strictly decreasing
with respect to y along each vertical line in S. Thus, for any point (x,y) of S we
have f(z,y) < f(x,y), where § = 1/(1 + x). Hence, if f(x,y) has a maximum
point over S, then that maximum point must be somewhere on the curve K given
by y =1/(1+ z).

Along K we have f(z,y) = e*®), where v(z) = —22 — 2 — 2(1 4 )72, so we
must study ¢(z) = e*® for 2 > 0. The derivative of ¢ is

¢ (2) = e’@v(z) =@ (=2 -2z +4(1+2) %) =e EE

We see that ¢ has only one stationary point in [0, 00), namely 25 = v/2 — 1. Also,
¢'(x) has the same sign as 2 — (1 + x)%, so ¢ is strictly increasing in [0, 5] and
strictly decreasing in [z2,00). Thus, ¢(z) attains its greatest value for z = x,.
The corresponding value of y is yo = 1/(1 + z2) = 1/v/2.

4
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Conclusion: If f(x,y) attains a maximum over S, then the maximum point must
be (x2,y2) and

1 1-2v2
— ) =e (=~ 0.1607) .

(d) Why does f have a maximum over S? This was answered almost completely
in part (c). It was shown there that for every point (x,y) in S we have

fla,y) < f2,1/(1 + x)) = p(x).

fmax = f(x2,92) = f(é/i_ 1,

It follows that
flx,y) < p(r2) = fx2,y2)

Hence (x2,y2) is a maximum point (and the only one) for f over S.
There is no minimum point for f over S. Choosing x and y sufficiently large,
we can get f(z,y) as close to 0 as we like, but f(x,y) will always be greater than 0.

Exam problem 110
(a) With the Lagrangian

L(z,y,2) =2® +y* + 2 — MNa? + 2% + 42° — 1)

we get the following necessary first-order conditions:

(1) L(z,y,z) =2x -2 \x =0
(2) Lh(z,y,z) =2y —4 y =0
(3) Lh(z,y,z) = 1—8Xz=0
(4) 22+ 292+ 422 =1

(Equation (4) is the constraint.) Equation (1) yields 2z(1 — X) = 0, so there are
two cases to investigate:

(A) z=0, (B) A=1.

(A) Assume z = 0. From (2) we get 2y(1 —2X\) =0, and thus y =0 or A =1/2.

(A1) If y = 0, then (4) implies 42° = 1 — 22 — 2y?> = 1. Therefore 22 = 1/4,
and z = +1/2. Equation (3) gives A = 1/8z. We get the following candidates for
extreme points:

Py :(0,0,1/2) with A =1/4, £(0,0,1/2) = 1/2,
Py:(0,0,—1/2) with A=—1/4,  f(0,0,—1/2) = —1/2.

(A.2) If A =1/2, then (3) yields z = 1/8\ = 1/4. It then follows from (4) that
2y2 =1—22—422=1-0-1/4 = 3/4 (remember that we have assumed z = 0!),
and hence y = £1/3/8 = £1/6/4. This gives the candidate points
Py (0,VB/4,1/4) med A=1/2,  f(0,v/6/4,1/4) = 58,
Py:(0,—v6/4,1/4) med A=1/2,  f(0,—6/4,1/4) = 5/8.
)
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(B) Now assume A\ = 1. Equation (3) gives z = 1/8, and (2) gives y = 0. From
the constraint (4) we get 22 = 1 — 2y? — 422 = 1 — 4/64 = 15/16, and therefore
x = £v/15/4. Candidate points:
Ps:(v15/4,0,1/8) with A =1, f(v/15/4,0,1/8) = 17/16,
Ps:(—V15/4,0,1/8) with A=1,  f(—v15/4,0,1/8) = 17/16.

Comparing the function values, we see that f attains its maximum value fiaxs =
17/16 at the points P5 and Py, and its minimum value f,i, = —1/2 at Py. (The ad-
missible set, i.e. the set of points that satisfy the constraint, is closed and bounded,
and since f is continuous, the extreme value theorem guarantees that f will attain
both a maximum and a minimum over the admissible set.)

(b) The change in the maximum value is
Af* = f5(1+0.02) — £*(1) ~ Ade = 1-0.02 = 0.02,

cf. formula (14.2.3) on page 496 in EMEA (formula (14.2.5) on page 505 in MA I).

Solutions of the extra problems:

Exam problem 16

(a) fi(z,y) =2(x+y—2)+2x*+y —2)2z = 42> + 4oy — 62 + 2y — 4,
fale,y) =2(z +y —2) +2(a® +y — 2) = 2% + 2z + 4y — 8,
B y) =122° +4y =6, fio(z,y) = o (w,y) =dw+2,  fir(a,y) =4

(b) The stationary points are where fi(z,y) = 0 and f5(x,y) = 0. From the
latter equation we get 2y = —x? — = + 4, and if we substitute this expression for
2y in the first equation we get

42° +20(—2* —24+4) —6r+ (-2 —24+4) —4=0 <= 22° - 32* +2 =0
< r=0o0r 22 -3r+1=0 <= x=0o0rz=1or z=1/2.

It follows that the stationary points of f are
(xlayl) = (072)7 ($2,y2) = (171)7 (-733,@/3) = (1/27 13/8)

The second-derivative test yields the following results:

(z,9) A=fli | B=fis | C=fs | AC-B* | Type of point
(0,2) 2 2 4 4 Local min. point
(1,1) 10 6 4 4 Local min. point
(1/2,13/8) 7/2 4 4 —2 Saddle point
6
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This shows that the points (z1,y1) and (z2,y2) are local minimum points. They

are, in fact, global minimum points because f(z1,y1) = f(z2,y2) = —8 and it is

clear from the definition of f that f(z,y) >0+ 0— 8 = —8 for all (x,y).

(c) ¢'(t) =pfilpt, at)+afs(pt, qt) = 4p*t> +6p>qt* + (—6p* +4¢* +4pq)t — 4p—8q.
If p # 0, then the 3 term will dominate for large ¢ and ¢/(t) — oo as t — oo.

If p=0, then ¢ # 0 and ¢'(t) = 4¢*t — 8¢ will obviously tend to oo as t — oco.

Exam problem 33

12+

1A%
10 R

II1

12 14 16 18

Exam problem 33 (a)

(b) Since f has partial derivatives everywhere, any minimum points in the set A
must be stationary points in A or boundary points of A. The first-order partial
derivatives of f are

of

22 — 8, — = —y? + 8y — 15.
y

of

e

It is clear that f; = 0 if and only if z = 4, and f; = 0 if and only if y = 3 or

y = 5. Thus, the stationary points of f are (4,3) and (4,5). Only the last of these
belongs to A. S

It is natural to see the boundary of A as composed of four parts, namely

the edges labeled I, II, III, and IV in the figure. We shall investigate these parts
separately.

Along I, y =0, x > 8, and f(x,y) = f(z,0) = 2% — 8x. Let g(z) = 22 — 8z. Then
g'(z) = 2x — 8. Since ¢'(x) > 0 for all z > 8, the value of f(x,y) will increase as
we move right along the edge I. This means that the minimum point of f along I
is (8,0).
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Along I, y =8 —x and 0 < x < 8. Let

h(z) = f(z,8 —x) = —%(8 —2)? + 48 —x)* —15(8 —z) + 2% — 8z

A minimum point for f(x,y) along II must correspond to a minimum point for
h(z) over the interval [0, 8]. Since

B(z)=2>—62+7=(x—3)* -2,

thee stationary points of h are z = 3 £ /2. A minimum point for h over [0, 8]
must be one of these points or an end point of the interval. Calculation of function
values gives

h(0) = —104/3 ~ —34.6667,
h(3 —/2) = —(95 — 4v/2) /3 ~ —29.7810,
h(3+V?2) = —(95 + 4v/2)/3 ~ —33.5523,
h(8) = 0.

Hence, the minimum point of f along II is (0, 8).

Along I1I we have x = 0 and 8 < y < 10. Here f(x,y) = f(0,y) = —y3/3 + 4y —
15y. Since

o 3
oy (—%+4y2—15y) =y +8y—15=—(y—3)(y—5) <0

when y > 5, the value of f(z,y) will decrease when we move upwards along III,
and so the minimum point of f along III is (0, 10).

Along IV, y = 10 and x > 0. Here

flesy) = F@,10) = =20 + 2% — 8,

which attains its lowest value when x = 4 (and y = 10).

The minimum point of f over A must be among the five points that we have found.
Since
f(4,5)=-98/3, f(8,0)=0, f(0,8) =-104/3,
f(0,10) = —250/3, and f(4,10) = —298/3,

it is clear that the minimum point of f over A is (4,10), and the minimum value
is —298/3.

The figure shows these five points together with the two points (3£v/2, 5Fv/2)
on II, which correspond to the stationary points of the function h.

8
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Exam problem 61

We are going to investigate the equation system

In(x 4+ u) + uv — y?e” +y =0

u? —z¥ =w
around the point P : (x,y,u,v) = (2,1,—1,0).

(a) When we differentiate the system, we shall need the differential of V. The
simplest way to find this is to use that ¥ = (e!"*)? = ¢?12% We get

d(z®) = d(e’?) = e’ %{(pInz) = 2V (lnx dv +v d(lnw)) =" (lna: dv + v dgc),
x
and if we now differentiate the given equation system we get

(dx + du) +vdu + udv — 2ye’ dy — y*e’ dv +dy =0

x4+ u
2Qudu —z'Inzdv — ' o de = dv

(b) Since we only want the values of the partial derivatives at the point P, we
insert the values of x, y, u, and v in the differentiated equation system. Thus
we shall not bother with finding general expressions for du og dv, but only their
values at P. With z =2,y =1, u = —1, and v = 0 we get

1

I(dw+du)—dv—2ydy—dv+dy:0

—2du—In2dv —0=dv
We rearrange this as
du —2dv = —dx + dy
—2u—(1+1In2)dv=0

The last equation yields

9
_ d
1+n2 ™™

(%) dv =

and if we insert this into the first equation, we get

4 5+1In2
du + 1_Hn2du-—dx+dy — 1+1n2du-—dm+dy.
Hence,
1+1In2 1+1In2
du = — d
T me P T s me W
and therefore
o — 1+In2 u,_1+1n2
T 54In2’ v o 54In2’
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Equation (x) gives
2

dv = dx — d
T m2 ™ T 5rm2 ™
and so
o= — 2 o =2
T 54+1In2’ Y 54+1In2°

(c) We use the “increment formula” (Norwegian: tilvekstformelen):
w@ +de,y + dy) = u(@,y) + uy(2,y) dr + uy (z,y) dy.
This formula yields
(2 = 0.01,1+0.02) ~ u(2,1) +u},(2,1) - (=0.01) + u, (2, 1) - 0.02

1+1In2 1+1n2
-1 (— )— 01 £0.02
5 m2) 0O 5o 00
14+1In2
=-1 -0.03 = —0.9911.
Ty 003~ —0.99

Exam problem 67
(a) Vi bruker implisitt elastisitering. Av El,(y? + e*t1/¥) = El, 3 = 0 far vi

El, y? + El, e® + El, e'/¥ =

som gir
1 1 . 1
9Bl y + 2 + — El, (-) —0 & (2—-) El,y=—a
y y y

x xy
— El,y=+ = .

(Ved (%) bruker vi kjerneregelen, som gir El, e* = El, e" El, u = wEl, u, med
u=1/y.)

(b) Differensiering gir likningssystemet

au® Vdu 4 BvP do = 28 da + 3y% dy
au® P du + u Pt dv — BoP dv = da — dy

I punktet P = (z,y,u,v) = (1,1,1,2) far vi

adu+ 32°Vdv=2%dx +3dy

28 du =dxr —dy
som gir
27F 2+
du=——dxr— —dy
o o}
268 _2=F 34275
dv = x

gt Wt T W
10
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Dermed har vi

ou 2P ou 25 ov B 26 _9-8 ov 3+ 2—h

dr- e Oy a dx pPl oy gl

(c) Av det foregaende ser vi at u},(1,1) = 277 /o og uj(1,1) = —27F /. Videre
har vi u(1,1) = 1. Tilvekstformelen gir da

1(0.99,1.01) ~ u(1,1) + u}(1,1) - (=0.01) + uy (1,1) - 0.01
27F -1 278 1 210

=1+ =1- .
a 100 a 100 1000

Exam problem 138
(a) L=e¢"F+y+z—M(z+y+z—1)— (@ +y*+22—-1)

oL :
%:e:‘—)\l—Z)\gx:O (1)
oL .
6—y:1—)\1—2)\2y:0 (ii)
%:1—)\1—2)\2z=0 (ii)

Fra (ii) og (iii) folger det at 2Xoy = 2X\32. Dermed er (A) y = z eller (B) A2 = 0.
A Hvis z = y, gir bibetingelsene at 2% + 2y?> = 1 og # + 2y = 1. Av den siste
likningen finner vi z = 1 — 2y som innsatt i 22 4+ 2y? = 1 og ordnet gir 632 —4y = 0.
Herav y = 0 eller y = 2/3. Dette gir kandidatene (z,y,2) = (1,0,0) med \; =1

0g Az = %(6 - 1)7 og (_%7 %7 %) med A; = % + %6_1/3 0og Ao = % - %6_1/3.

B Hvis Ay = 0, gir (ii) at Ay = 1 som innsatt i (i) gir e = 1, og dermed = = 0.
Bibetingelsene gir da y? + 22 = 1 og y + z = 1 med lgsninger (y,z) = (0,1) og
(1,0). Det gir kandidatene (x,y,z) = (0,0,1), (0,1,0) med tilhgrende A\; = 1,

For (1,0,0) er kriteriefunksjonen lik e.
For (—%, %, %) er kriteriefunksjonen lik e=1/3 + %.
For (0,0, 1) er kriteriefunksjonen lik 2.

For (0,1,1) er kriteriefunksjonen lik 2. Her er e™'/3 + 3 <1+3= % < e.

Siden beskrankningsmengden er lukket og begrenset og kriteriefunksjonen er kon-
tinuerlig, fins det et maksimum, og det er i punktet (1,0, 0).

(b) Af* & Ay - (0.02) 4 Ay - (—0.02) = 0.02 — 0.002 - %(e ~1)=0.01(3 —e).

11
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