ECON3120/4120 Mathematics 2, spring 2009

Problem solutions for Seminar 11, 22-27 April

Exam problem 38

(a) Computing differentials, we get

$$
\begin{aligned}
v d\left(u^{2}\right)+u^{2} d v-d u & =3 x^{2} d x+6 y^{2} d y \\
e^{u x} d(u x) & =y d v+v d y
\end{aligned}
$$

that is,

$$
\begin{aligned}
2 u v d u+u^{2} d v-d u & =3 x^{2} d x+6 y^{2} d y \\
u e^{u x} d x+x e^{u x} d u & =y d v+v d y
\end{aligned}
$$

If we substitute the values $x=0, y=1, u=2$, and $v=1$, we get

$$
\begin{aligned}
4 d u+4 d v-d u & =6 d y \\
2 d x+0 d u & =d v+d y
\end{aligned}
$$

After a bit of calculation this yields

$$
d u=-\frac{8}{3} d x+\frac{10}{3} d y \quad \text { and } \quad d v=2 d x-d y
$$

at the point P. Hence, at this point

$$
\frac{\partial u}{\partial y}=\frac{10}{3} \quad \text { and } \quad \frac{\partial v}{\partial x}=2
$$

(b) We get

$$
\Delta u \approx d u=-\frac{8}{3} d x+\frac{10}{3} d y=-\frac{8}{3} \cdot 0.1+\frac{10}{3} \cdot(-0.2)=-\frac{2.8}{3} \approx-0.933
$$

and

$$
\Delta v \approx d v=2 d x-d y=2 \cdot 0.1-(-0.2)=0.4
$$

Exam problem 54

The first- and second-order partial derivatives of f are

$$
\begin{aligned}
& f_{1}^{\prime}(x, y)=2 x-y-3 x^{2}, \quad f_{2}^{\prime}(x, y)=-2 y-x, \\
& f_{11}^{\prime \prime}(x, y)=2-6 x, \quad f_{12}^{\prime \prime}(x, y)=-1, \quad f_{22}^{\prime \prime}(x, y)=-2 .
\end{aligned}
$$

The stationary points are the solutions of the equation system

$$
\begin{array}{r}
2 x-y-3 x^{2}=0 \\
-2 y-x=0
\end{array}
$$

The last equation is equivalent to $x=-2 y$, and if we use this in the first equation we get

$$
-5 y-12 y^{2}=0 \Longleftrightarrow-12 y\left(y+\frac{5}{12}\right)=0 \Longleftrightarrow y=0 \text { eller } y=-\frac{5}{12}
$$

It follows that f has two stationary points,

$$
\left(x_{1}, y_{1}\right)=(0,0) \quad \text { og } \quad\left(x_{2}, y_{2}\right)=(5 / 6,-5 / 12)
$$

In order to determine what kind of stationary point they are, we use the secondderivative test and calculate the values of $A=f_{11}^{\prime \prime}(x, y), B=f_{12}^{\prime \prime}(x, y)$ and $C=$ $f_{22}^{\prime \prime}(x, y)$ at each of the three stationary points. That gives the results

(x, y)	A	B	C	$A C-B^{2}$	Type of stat. point
$(0,0)$	2	-1	-2	-5	Saddle point
$\left(\frac{5}{6},-\frac{5}{12}\right)$	-3	-1	-2	5	Local max. point

Exam problem 141

(a) The derivatives of order one and two are

$$
\begin{aligned}
f_{1}^{\prime}(x, y) & =x e^{y}-x^{2}, & f_{2}^{\prime}(x, y) & =\frac{1}{2} x^{2} e^{y}-(1+3 y) e^{3 y} \\
f_{11}^{\prime \prime}(x, y) & =e^{y}-2 x, & f_{12}^{\prime \prime}(x, y) & =x e^{y}, \quad f_{22}^{\prime \prime}(x, y)=\frac{1}{2} x^{2} e^{y}-(6+9 y) e^{3 y}
\end{aligned}
$$

(b) The stationary points are the solutions of the equation system

$$
\begin{align*}
x e^{y}-x^{2} & =0 \tag{1}\\
\frac{1}{2} x^{2} e^{y}-(1+3 y) e^{3 y} & =0 \tag{2}
\end{align*}
$$

From (1) we get $x=0$ or $e^{y}=x$.
A. If $x=0$, then (2) gives $y=-1 / 3$, and we get the stationary point $\left(x_{1}, y_{1}\right)=$ ($0,-\frac{1}{3}$).
B. If $e^{y}=x$, then $e^{3 y}=x^{3}$, and (2) yields

$$
\frac{1}{2} x^{3}-(1+3 y) x^{3}=0 \quad \Longleftrightarrow \quad x^{3}\left(\frac{1}{2}-1-3 y\right)=0
$$

Since $x=e^{y}$, we must have $x \neq 0$, and therefore $\frac{1}{2}-1-3 y=0 \Longleftrightarrow y=$ $-1 / 6$. Then $x=e^{y}=e^{-1 / 6}$, and we have a second stationary point $\left(x_{2}, y_{2}\right)=$ $\left(e^{-1 / 6},-\frac{1}{6}\right)$.

We classify the stationary points by means of the second-derivative test.

(x, y)	A	B	C	$A C-B^{2}$	Type of point
$\left(0,-\frac{1}{3}\right)$	$e^{-1 / 3}$	0	$-3 e^{-1}$	$-3 e^{-4 / 3}$	Saddle point
$\left(e^{-1 / 6},-\frac{1}{6}\right)$	$-e^{-1 / 6}$	$e^{-1 / 3}$	$-4 e^{-1 / 2}$	$3 e^{-2 / 3}$	Local max. point

The function f has no global extreme points. Recall that a global extreme point must also be a local extreme point, and the only local extreme point we have here is the local maximum point $\left(x_{2}, y_{2}\right)$, which gives the local maximum value $f\left(x_{2}, y_{2}\right)=f\left(e^{-1 / 6},-\frac{1}{6}\right)=\frac{1}{3} e^{-1 / 2}$. But this is not a global maximum value for f because, for example, $f(-1,0)=\frac{5}{6}>\frac{1}{3}>f\left(x_{2}, y_{2}\right)$.

However, the easiest way to show that f has no global maximum or minimum is to study

$$
f(x, 0)=\frac{x^{2}}{2}-\frac{x^{3}}{3}=x^{3}\left(\frac{1}{2 x}-\frac{1}{3}\right) .
$$

It is clear from the last expression that

$$
\lim _{x \rightarrow \infty} f(x, 0)=-\infty \quad \text { and } \quad \lim _{x \rightarrow-\infty} f(x, 0)=\infty
$$

Exam problem 141(c)
(c) The slope of the level curve $f(x, y)=-\frac{2}{3}$ at $(2,0)$ is

$$
-\frac{f_{1}^{\prime}(2,0)}{f_{2}^{\prime}(2,0)}=2
$$

The figure shows the level curve together with its tangent at $(2,0)$.

Exam problem 24

(a) To simplify the notation, we write $u=-2 x-x^{2}-2 y^{2}$. Then the first- and second-order derivatives of $f(x, y)=e^{-2 x-x^{2}-2 y^{2}}=e^{u}$ are

$$
\begin{aligned}
f_{1}^{\prime}(x, y) & =-2(1+x) e^{u}, \quad f_{2}^{\prime}(x, y)=-4 y e^{u} \\
f_{11}^{\prime \prime}(x, y) & =-2 e^{u}+4(1+x)^{2} e^{u}, \quad f_{12}^{\prime \prime}(x, y)=-2(1+x)(-4 y) e^{u} \\
f_{22}^{\prime \prime}(x, y) & =-4 e^{u}+(-4 y)^{2} e^{u}
\end{aligned}
$$

Since $e^{u}>0$ for all u, the only stationary point is $\left(x_{0}, y_{0}\right)=(-1,0)$. The corresponding value of u is $u_{0}=-2 x_{0}-x_{0}^{2}-2 y_{0}^{2}=1$. With $A=f_{11}^{\prime \prime}\left(x_{0}, y_{0}\right)=-2 e^{u_{0}}=$ $-2 e, B=f_{12}^{\prime \prime}\left(x_{0}, y_{0}\right)=0$, and $C=f_{22}^{\prime \prime}\left(x_{0}, y_{0}\right)=-4 e^{u_{0}}=-4 e$, we have $A<0$ and $A C-B^{2}=8 e^{2}>0$. Therefore $(-1,0)$ is a local maximum point for f.

The set S in Problem 24(b)
(c) The problem "maximize $f(x, y)$ for (x, y) in S " has no solution in the interior of S, since f has no stationary point there. The maximum is therefore attained somewhere on the boundary of S.

It is clear from the expression for $f_{2}^{\prime}(x, y)$ that $f(x, y)$ is strictly decreasing with respect to y along each vertical line in S. Thus, for any point (x, y) of S we have $f(x, y) \leq f(x, \bar{y})$, where $\bar{y}=1 /(1+x)$. Hence, if $f(x, y)$ has a maximum point over S, then that maximum point must be somewhere on the curve K given by $y=1 /(1+x)$.

Along K we have $f(x, y)=e^{v(x)}$, where $v(x)=-2 x-x^{2}-2(1+x)^{-2}$, so we must study $\varphi(x)=e^{v(x)}$ for $x \geq 0$. The derivative of φ is

$$
\varphi^{\prime}(x)=e^{v(x)} v^{\prime}(x)=e^{v(x)}\left(-2-2 x+4(1+x)^{-3}\right)=e^{v(x)} \frac{4-2(1+x)^{4}}{(1+x)^{3}}
$$

We see that φ has only one stationary point in $[0, \infty)$, namely $x_{2}=\sqrt[4]{2}-1$. Also, $\varphi^{\prime}(x)$ has the same sign as $2-(1+x)^{4}$, so φ is strictly increasing in $\left[0, x_{2}\right]$ and strictly decreasing in $\left[x_{2}, \infty\right)$. Thus, $\varphi(x)$ attains its greatest value for $x=x_{2}$. The corresponding value of y is $y_{2}=1 /\left(1+x_{2}\right)=1 / \sqrt[4]{2}$.

Conclusion: If $f(x, y)$ attains a maximum over S, then the maximum point must be $\left(x_{2}, y_{2}\right)$ and

$$
f_{\max }=f\left(x_{2}, y_{2}\right)=f\left(\sqrt[4]{2}-1, \frac{1}{\sqrt[4]{2}}\right)=e^{1-2 \sqrt{2}} \quad(\approx 0.1607)
$$

(d) Why does f have a maximum over S ? This was answered almost completely in part (c). It was shown there that for every point (x, y) in S we have

$$
f(x, y) \leq f(x, 1 /(1+x))=\varphi(x)
$$

It follows that

$$
f(x, y) \leq \varphi\left(x_{2}\right)=f\left(x_{2}, y_{2}\right)
$$

Hence $\left(x_{2}, y_{2}\right)$ is a maximum point (and the only one) for f over S.
There is no minimum point for f over S. Choosing x and y sufficiently large, we can get $f(x, y)$ as close to 0 as we like, but $f(x, y)$ will always be greater than 0 .

Exam problem 110

(a) With the Lagrangian

$$
\mathcal{L}(x, y, z)=x^{2}+y^{2}+z-\lambda\left(x^{2}+2 y^{2}+4 z^{2}-1\right)
$$

we get the following necessary first-order conditions:

$$
\begin{array}{r}
\mathcal{L}_{1}^{\prime}(x, y, z)=2 x-2 \lambda x=0 \\
\mathcal{L}_{2}^{\prime}(x, y, z)=2 y-4 \lambda y=0 \\
\mathcal{L}_{3}^{\prime}(x, y, z)=1-8 \lambda z=0 \\
x^{2}+2 y^{2}+4 z^{2}=1 \tag{4}
\end{array}
$$

(Equation (4) is the constraint.) Equation (1) yields $2 x(1-\lambda)=0$, so there are two cases to investigate:

$$
\text { (A) } \underline{x=0}, \quad \text { (B) } \quad \underline{\lambda=1} \text {. }
$$

(A) Assume $\underline{x=0}$. From (2) we get $2 y(1-2 \lambda)=0$, and thus $y=0$ or $\underline{\lambda=1 / 2}$. (A.1) If $y=0$, then (4) implies $4 z^{2}=1-x^{2}-2 y^{2}=1$. Therefore $z^{2}=1 / 4$, and $z= \pm 1 / 2$. Equation (3) gives $\lambda=1 / 8 z$. We get the following candidates for extreme points:

$$
\begin{array}{ll}
P_{1}:(0,0,1 / 2) \text { with } \lambda=1 / 4, & f(0,0,1 / 2)=1 / 2, \\
P_{2}:(0,0,-1 / 2) \text { with } \lambda=-1 / 4, & f(0,0,-1 / 2)=-1 / 2
\end{array}
$$

(A.2) If $\lambda=1 / 2$, then (3) yields $z=1 / 8 \lambda=1 / 4$. It then follows from (4) that $2 y^{2}=1-x^{2}-4 z^{2}=1-0-1 / 4=3 / 4$ (remember that we have assumed $x=0$!), and hence $y= \pm \sqrt{3 / 8}= \pm \sqrt{6} / 4$. This gives the candidate points

$$
\begin{array}{ll}
P_{3}:(0, \sqrt{6} / 4,1 / 4) \operatorname{med} \lambda=1 / 2, & f(0, \sqrt{6} / 4,1 / 4)=5 / 8 \\
P_{4}:(0,-\sqrt{6} / 4,1 / 4) \text { med } \lambda=1 / 2, & f(0,-\sqrt{6} / 4,1 / 4)=5 / 8
\end{array}
$$

(B) Now assume $\lambda=1$. Equation (3) gives $z=1 / 8$, and (2) gives $y=0$. From the constraint (4) we get $x^{2}=1-2 y^{2}-4 z^{2}=1-4 / 64=15 / 16$, and therefore $x= \pm \sqrt{15} / 4$. Candidate points:

$$
\begin{array}{ll}
P_{5}:(\sqrt{15} / 4,0,1 / 8) \text { with } \lambda=1, & f(\sqrt{15} / 4,0,1 / 8)=17 / 16 \\
P_{6}:(-\sqrt{15} / 4,0,1 / 8) \text { with } \lambda=1, & f(-\sqrt{15} / 4,0,1 / 8)=17 / 16
\end{array}
$$

Comparing the function values, we see that f attains its maximum value $f_{\text {maks }}=$ $17 / 16$ at the points P_{5} and P_{6}, and its minimum value $f_{\min }=-1 / 2$ at P_{2}. (The admissible set, i.e. the set of points that satisfy the constraint, is closed and bounded, and since f is continuous, the extreme value theorem guarantees that f will attain both a maximum and a minimum over the admissible set.)
(b) The change in the maximum value is

$$
\Delta f^{*}=f^{*}(1+0.02)-f^{*}(1) \approx \lambda d c=1 \cdot 0.02=0.02
$$

cf. formula (14.2.3) on page 496 in EMEA (formula (14.2.5) on page 505 in MA I).

Solutions of the extra problems:

Exam problem 16

(a) $f_{1}^{\prime}(x, y)=2(x+y-2)+2\left(x^{2}+y-2\right) 2 x=4 x^{3}+4 x y-6 x+2 y-4$,
$f_{2}^{\prime}(x, y)=2(x+y-2)+2\left(x^{2}+y-2\right)=2 x^{2}+2 x+4 y-8$,
$f_{11}^{\prime \prime}(x, y)=12 x^{2}+4 y-6, \quad f_{12}^{\prime \prime}(x, y)=f_{21}^{\prime \prime}(x, y)=4 x+2, \quad f_{22}^{\prime \prime}(x, y)=4$.
(b) The stationary points are where $f_{1}^{\prime}(x, y)=0$ and $f_{2}^{\prime}(x, y)=0$. From the latter equation we get $2 y=-x^{2}-x+4$, and if we substitute this expression for $2 y$ in the first equation we get

$$
\begin{gathered}
4 x^{3}+2 x\left(-x^{2}-x+4\right)-6 x+\left(-x^{2}-x+4\right)-4=0 \Longleftrightarrow 2 x^{3}-3 x^{2}+x=0 \\
\Longleftrightarrow x=0 \text { or } 2 x^{2}-3 x+1=0 \Longleftrightarrow x=0 \text { or } x=1 \text { or } x=1 / 2 .
\end{gathered}
$$

It follows that the stationary points of f are

$$
\left(x_{1}, y_{1}\right)=(0,2), \quad\left(x_{2}, y_{2}\right)=(1,1), \quad\left(x_{3}, y_{3}\right)=(1 / 2,13 / 8)
$$

The second-derivative test yields the following results:

(x, y)	$A=f_{11}^{\prime \prime}$	$B=f_{12}^{\prime \prime}$	$C=f_{22}^{\prime \prime}$	$A C-B^{2}$	Type of point
$(0,2)$	2	2	4	4	Local min. point
$(1,1)$	10	6	4	4	Local min. point
$(1 / 2,13 / 8)$	$7 / 2$	4	4	-2	Saddle point

This shows that the points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ are local minimum points. They are, in fact, global minimum points because $f\left(x_{1}, y_{1}\right)=f\left(x_{2}, y_{2}\right)=-8$ and it is clear from the definition of f that $f(x, y) \geq 0+0-8=-8$ for all (x, y).
(c) $g^{\prime}(t)=p f_{1}^{\prime}(p t, q t)+q f_{2}^{\prime}(p t, q t)=4 p^{4} t^{3}+6 p^{2} q t^{2}+\left(-6 p^{2}+4 q^{2}+4 p q\right) t-4 p-8 q$. If $p \neq 0$, then the t^{3} term will dominate for large t and $g^{\prime}(t) \rightarrow \infty$ as $t \rightarrow \infty$. If $p=0$, then $q \neq 0$ and $g^{\prime}(t)=4 q^{2} t-8 q$ will obviously tend to ∞ as $t \rightarrow \infty$.

Exam problem 33

Exam problem 33 (a)
(b) Since f has partial derivatives everywhere, any minimum points in the set A must be stationary points in A or boundary points of A. The first-order partial derivatives of f are

$$
\frac{\partial f}{\partial x}=2 x-8, \quad \frac{\partial f}{\partial y}=-y^{2}+8 y-15
$$

It is clear that $f_{x}^{\prime}=0$ if and only if $x=4$, and $f_{y}^{\prime}=0$ if and only if $y=3$ or $y=5$. Thus, the stationary points of f are $(4,3)$ and $(4,5)$. Only the last of these belongs to A.

It is natural to see the boundary of A as composed of four parts, namely the edges labeled I, II, III, and IV in the figure. We shall investigate these parts separately.

Along I, $y=0, x \geq 8$, and $f(x, y)=f(x, 0)=x^{2}-8 x$. Let $g(x)=x^{2}-8 x$. Then $g^{\prime}(x)=2 x-8$. Since $g^{\prime}(x)>0$ for all $x>8$, the value of $f(x, y)$ will increase as we move right along the edge I. This means that the minimum point of f along I is $(8,0)$.

Along II, $y=8-x$ and $0 \leq x \leq 8$. Let

$$
\begin{aligned}
h(x)=f(x, 8-x)=-\frac{1}{3}(8-x)^{3}+4(8-x)^{2}- & 15(8-x)+x^{2}-8 x \\
=\cdots & =\frac{x^{3}}{3}-3 x^{2}+7 x-\frac{104}{3} .
\end{aligned}
$$

A minimum point for $f(x, y)$ along II must correspond to a minimum point for $h(x)$ over the interval [0, 8]. Since

$$
h^{\prime}(x)=x^{2}-6 x+7=(x-3)^{2}-2,
$$

thee stationary points of h are $x=3 \pm \sqrt{2}$. A minimum point for h over $[0,8]$ must be one of these points or an end point of the interval. Calculation of function values gives

$$
\begin{aligned}
h(0) & =-104 / 3 \approx-34.6667, \\
h(3-\sqrt{2}) & =-(95-4 \sqrt{2}) / 3 \approx-29.7810, \\
h(3+\sqrt{2}) & =-(95+4 \sqrt{2}) / 3 \approx-33.5523, \\
h(8) & =0
\end{aligned}
$$

Hence, the minimum point of f along II is $(0,8)$.
Along III we have $x=0$ and $8 \leq y \leq 10$. Here $f(x, y)=f(0, y)=-y^{3} / 3+4 y^{2}-$ $15 y$. Since

$$
\frac{\partial}{\partial y}\left(-\frac{y^{3}}{3}+4 y^{2}-15 y\right)=-y^{2}+8 y-15=-(y-3)(y-5)<0
$$

when $y>5$, the value of $f(x, y)$ will decrease when we move upwards along III, and so the minimum point of f along III is $(0,10)$.

Along IV, $y=10$ and $x \geq 0$. Here

$$
f(x, y)=f(x, 10)=-\frac{250}{3}+x^{2}-8 x
$$

which attains its lowest value when $x=4$ (and $y=10$).
The minimum point of f over A must be among the five points that we have found. Since

$$
\begin{aligned}
f(4,5) & =-98 / 3, \quad f(8,0)=0, \quad f(0,8)=-104 / 3, \\
f(0,10) & =-250 / 3, \quad \text { and } \quad f(4,10)=-298 / 3,
\end{aligned}
$$

it is clear that the minimum point of f over A is $(4,10)$, and the minimum value is $-298 / 3$.

The figure shows these five points together with the two points $(3 \pm \sqrt{2}, 5 \mp \sqrt{2})$ on II, which correspond to the stationary points of the function h.

Exam problem 61

We are going to investigate the equation system

$$
\begin{aligned}
\ln (x+u)+u v-y^{2} e^{v}+y & =0 \\
u^{2}-x^{v} & =v
\end{aligned}
$$

around the point $P:(x, y, u, v)=(2,1,-1,0)$.
(a) When we differentiate the system, we shall need the differential of x^{v}. The simplest way to find this is to use that $x^{v}=\left(e^{\ln x}\right)^{v}=e^{v \ln x}$. We get

$$
d\left(x^{v}\right)=d\left(e^{v \ln x}\right)=e^{v \ln x} d(v \ln x)=x^{v}(\ln x d v+v d(\ln x))=x^{v}\left(\ln x d v+\frac{v}{x} d x\right)
$$

and if we now differentiate the given equation system we get

$$
\begin{aligned}
\frac{1}{x+u}(d x+d u)+v d u+u d v-2 y e^{v} d y-y^{2} e^{v} d v+d y & =0 \\
2 u d u-x^{v} \ln x d v-x^{v-1} v d x & =d v
\end{aligned}
$$

(b) Since we only want the values of the partial derivatives at the point P, we insert the values of x, y, u, and v in the differentiated equation system. Thus we shall not bother with finding general expressions for $d u$ og $d v$, but only their values at P. With $x=2, y=1, u=-1$, and $v=0$ we get

$$
\begin{aligned}
\frac{1}{1}(d x+d u)-d v-2 y d y-d v+d y & =0 \\
-2 d u-\ln 2 d v-0 & =d v
\end{aligned}
$$

We rearrange this as

$$
\begin{aligned}
d u-2 d v & =-d x+d y \\
-2 u-(1+\ln 2) d v & =0
\end{aligned}
$$

The last equation yields

$$
\begin{equation*}
d v=-\frac{2}{1+\ln 2} d u \tag{*}
\end{equation*}
$$

and if we insert this into the first equation, we get

$$
d u+\frac{4}{1+\ln 2} d u=-d x+d y \Longleftrightarrow \frac{5+\ln 2}{1+\ln 2} d u=-d x+d y
$$

Hence,

$$
d u=-\frac{1+\ln 2}{5+\ln 2} d x+\frac{1+\ln 2}{5+\ln 2} d y
$$

and therefore

$$
u_{x}^{\prime}=-\frac{1+\ln 2}{5+\ln 2}, \quad u_{y}^{\prime}=\frac{1+\ln 2}{5+\ln 2} .
$$

Equation (*) gives

$$
d v=\frac{2}{5+\ln 2} d x-\frac{2}{5+\ln 2} d y
$$

and so

$$
v_{x}^{\prime}=\frac{2}{5+\ln 2}, \quad v_{y}^{\prime}=-\frac{2}{5+\ln 2} .
$$

(c) We use the "increment formula" (Norwegian: tilvekstformelen):

$$
u(x+d x, y+d y) \approx u(x, y)+u_{x}^{\prime}(x, y) d x+u_{y}^{\prime}(x, y) d y
$$

This formula yields

$$
\begin{aligned}
u(2-0.01,1+0.02) & \approx u(2,1)+u_{x}^{\prime}(2,1) \cdot(-0.01)+u_{y}^{\prime}(2,1) \cdot 0.02 \\
& =-1+\left(-\frac{1+\ln 2}{5+\ln 2}\right)(-0.01)+\frac{1+\ln 2}{5+\ln 2} \cdot 0.02 \\
& =-1+\frac{1+\ln 2}{5+\ln 2} \cdot 0.03 \approx-0.9911
\end{aligned}
$$

Exam problem 67

(a) Vi bruker implisitt elastisitering. $\mathrm{Av}_{\mathrm{El}}^{x}\left(y^{2}+e^{x+1 / y}\right)=\mathrm{El}_{x} 3=0$ får vi

$$
\mathrm{El}_{x} y^{2}+\mathrm{El}_{x} e^{x}+\mathrm{El}_{x} e^{1 / y}=0
$$

som gir

$$
\begin{aligned}
2 \mathrm{El}_{x} y+x+\frac{1}{y} \mathrm{El}_{x}\left(\frac{1}{y}\right)=0 & \stackrel{(*)}{\Longleftrightarrow}\left(2-\frac{1}{y}\right) \mathrm{El}_{x} y=-x \\
& \Longleftrightarrow \mathrm{El}_{x} y=\frac{x}{\frac{1}{y}-2}=\frac{x y}{1-2 y} .
\end{aligned}
$$

(Ved (*) bruker vi kjerneregelen, som gir $\mathrm{El}_{x} e^{u}=\mathrm{El}_{u} e^{u} \mathrm{El}_{x} u=u \mathrm{El}_{x} u$, med $u=1 / y$.)
(b) Differensiering gir likningssystemet

$$
\begin{aligned}
\alpha u^{\alpha-1} d u+\beta v^{\beta-1} d v & =2^{\beta} d x+3 y^{2} d y \\
\alpha u^{\alpha-1} v^{\beta} d u+u^{\alpha} \beta v^{\beta-1} d v-\beta v^{\beta-1} d v & =d x-d y
\end{aligned}
$$

I punktet $P=(x, y, u, v)=(1,1,1,2)$ får vi

$$
\begin{aligned}
\alpha d u+\beta 2^{\beta-1} d v & =2^{\beta} d x+3 d y \\
\alpha 2^{\beta} d u & =d x-d y
\end{aligned}
$$

som gir

$$
\begin{aligned}
& d u=\frac{2^{-\beta}}{\alpha} d x-\frac{2^{-\beta}}{\alpha} d y \\
& d v=\frac{2^{\beta}-2^{-\beta}}{\beta 2^{\beta-1}} d x+\frac{3+2^{-\beta}}{\beta 2^{\beta-1}} d y
\end{aligned}
$$

Dermed har vi

$$
\frac{\partial u}{\partial x}=\frac{2^{-\beta}}{\alpha}, \quad \frac{\partial u}{\partial y}=-\frac{2^{-\beta}}{\alpha}, \quad \frac{\partial v}{\partial x}=\frac{2^{\beta}-2^{-\beta}}{\beta 2^{\beta-1}}, \quad \frac{\partial v}{\partial y}=\frac{3+2^{-\beta}}{\beta 2^{\beta-1}}
$$

(c) Av det foregående ser vi at $u_{x}^{\prime}(1,1)=2^{-\beta} / \alpha$ og $u_{y}^{\prime}(1,1)=-2^{-\beta} / \alpha$. Videre har vi $u(1,1)=1$. Tilvekstformelen gir da

$$
\begin{aligned}
u(0.99,1.01) & \approx u(1,1)+u_{x}^{\prime}(1,1) \cdot(-0.01)+u_{y}^{\prime}(1,1) \cdot 0.01 \\
& =1+\frac{2^{-\beta}}{\alpha} \cdot \frac{-1}{100}-\frac{2^{-\beta}}{\alpha} \cdot \frac{1}{100}=1-\frac{2^{1-\beta}}{100 \alpha}
\end{aligned}
$$

Exam problem 138

(a) $\mathcal{L}=e^{x}+y+z-\lambda_{1}(x+y+z-1)-\lambda_{2}\left(x^{2}+y^{2}+z^{2}-1\right)$

$$
\begin{align*}
& \frac{\partial \mathcal{L}}{\partial x}=e^{x}-\lambda_{1}-2 \lambda_{2} x=0 \tag{i}\\
& \frac{\partial \mathcal{L}}{\partial y}=1-\lambda_{1}-2 \lambda_{2} y=0 \tag{ii}\\
& \frac{\partial \mathcal{L}}{\partial z}=1-\lambda_{1}-2 \lambda_{2} z=0 \tag{iii}
\end{align*}
$$

Fra (ii) og (iii) følger det at $2 \lambda_{2} y=2 \lambda_{2} z$. Dermed er (A) $y=z$ eller (B) $\lambda_{2}=0$. A Hvis $z=y$, gir bibetingelsene at $x^{2}+2 y^{2}=1$ og $x+2 y=1$. Av den siste likningen finner vi $x=1-2 y$ som innsatt i $x^{2}+2 y^{2}=1$ og ordnet gir $6 y^{2}-4 y=0$. Herav $y=0$ eller $y=2 / 3$. Dette gir kandidatene $(x, y, z)=(1,0,0)$ med $\lambda_{1}=1$ og $\lambda_{2}=\frac{1}{2}(e-1)$, og $\left(-\frac{1}{3}, \frac{2}{3}, \frac{2}{3}\right)$ med $\lambda_{1}=\frac{1}{3}+\frac{2}{3} e^{-1 / 3}$ og $\lambda_{2}=\frac{1}{2}-\frac{1}{2} e^{-1 / 3}$.
B Hvis $\lambda_{2}=0$, gir (ii) at $\lambda_{1}=1$ som innsatt i (i) gir $e^{x}=1$, og dermed $x=0$. Bibetingelsene gir da $y^{2}+z^{2}=1$ og $y+z=1$ med løsninger $(y, z)=(0,1)$ og $(1,0)$. Det gir kandidatene $(x, y, z)=(0,0,1),(0,1,0)$ med tilhørende $\lambda_{1}=1$, $\lambda_{2}=0$.
For $(1,0,0)$ er kriteriefunksjonen lik e.
For $\left(-\frac{1}{3}, \frac{2}{3}, \frac{2}{3}\right)$ er kriteriefunksjonen lik $e^{-1 / 3}+\frac{4}{3}$.
For $(0,0,1)$ er kriteriefunksjonen lik 2.
For $(0,1,1)$ er kriteriefunksjonen lik 2. Her er $e^{-1 / 3}+\frac{4}{3}<1+\frac{4}{3}=\frac{7}{3}<e$. Siden beskrankningsmengden er lukket og begrenset og kriteriefunksjonen er kontinuerlig, fins det et maksimum, og det er i punktet $(1,0,0)$.
(b) $\Delta f^{*} \approx \lambda_{1} \cdot(0.02)+\lambda_{2} \cdot(-0.02)=0.02-0.002 \cdot \frac{1}{2}(e-1)=0.01(3-e)$.

