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Exam problem 38

(a) Computing differentials, we get

v d(u2) + u2 dv − du = 3x2 dx + 6y2 dy

eux d(ux) = y dv + v dy,

that is,
2uv du + u2 dv − du = 3x2 dx + 6y2 dy

ueux dx + xeux du = y dv + v dy.

If we substitute the values x = 0, y = 1, u = 2, and v = 1, we get

4 du + 4 dv − du = 6 dy

2 dx + 0 du = dv + dy.

After a bit of calculation this yields

du = −8
3

dx +
10
3

dy and dv = 2 dx − dy

at the point P . Hence, at this point

∂u

∂y
=

10
3

and
∂v

∂x
= 2.

(b) We get

Δu ≈ du = −8
3

dx +
10
3

dy = −8
3

· 0.1 +
10
3

· (−0.2) = −2.8
3

≈ −0.933

and
Δv ≈ dv = 2 dx − dy = 2 · 0.1 − (−0.2) = 0.4.

Exam problem 54

The first- and second-order partial derivatives of f are

f ′
1(x, y) = 2x − y − 3x2, f ′

2(x, y) = −2y − x,

f ′′
11(x, y) = 2 − 6x, f ′′

12(x, y) = −1, f ′′
22(x, y) = −2.
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The stationary points are the solutions of the equation system

2x − y − 3x2 = 0
−2y − x = 0

The last equation is equivalent to x = −2y, and if we use this in the first equation
we get

−5y − 12y2 = 0 ⇐⇒ −12y
(
y +

5
12

)
= 0 ⇐⇒ y = 0 eller y = − 5

12
.

It follows that f has two stationary points,

(x1, y1) = (0, 0) og (x2, y2) = (5/6,−5/12).

In order to determine what kind of stationary point they are, we use the second-
derivative test and calculate the values of A = f ′′

11(x, y), B = f ′′
12(x, y) and C =

f ′′
22(x, y) at each of the three stationary points. That gives the results

(x, y) A B C AC − B2 Type of stat. point

(0, 0) 2 −1 −2 −5 Saddle point

( 5
6 ,− 5

12 ) −3 −1 −2 5 Local max. point

Exam problem 141

(a) The derivatives of order one and two are

f ′
1(x, y) = xey − x2,

f ′′
11(x, y) = ey − 2x,

f ′
2(x, y) = 1

2x2ey − (1 + 3y)e3y,

f ′′
12(x, y) = xey, f ′′

22(x, y) = 1
2x2ey − (6 + 9y)e3y.

(b) The stationary points are the solutions of the equation system

xey − x2 = 0 (1)
1
2x2ey − (1 + 3y)e3y = 0 (2)

From (1) we get x = 0 or ey = x.

A. If x = 0, then (2) gives y = −1/3, and we get the stationary point (x1, y1) =
(0,− 1

3 ).

B. If ey = x, then e3y = x3, and (2) yields

1
2x3 − (1 + 3y)x3 = 0 ⇐⇒ x3( 1

2 − 1 − 3y) = 0.

Since x = ey, we must have x �= 0, and therefore 1
2 − 1 − 3y = 0 ⇐⇒ y =

−1/6. Then x = ey = e−1/6, and we have a second stationary point (x2, y2) =
(e−1/6,− 1

6 ).
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We classify the stationary points by means of the second-derivative test.

(x, y) A B C AC − B2 Type of point

(0,− 1
3 ) e−1/3 0 −3e−1 −3e−4/3 Saddle point

(e−1/6,− 1
6 ) −e−1/6 e−1/3 −4e−1/2 3e−2/3 Local max. point

The function f has no global extreme points. Recall that a global extreme
point must also be a local extreme point, and the only local extreme point we have
here is the local maximum point (x2, y2), which gives the local maximum value
f(x2, y2) = f(e−1/6,− 1

6 ) = 1
3e−1/2. But this is not a global maximum value for f

because, for example, f(−1, 0) = 5
6 > 1

3 > f(x2, y2).
However, the easiest way to show that f has no global maximum or minimum

is to study

f(x, 0) =
x2

2
− x3

3
= x3

( 1
2x

− 1
3

)
.

It is clear from the last expression that

lim
x→∞ f(x, 0) = −∞ and lim

x→−∞ f(x, 0) = ∞.

y

-1

1

x
1 2

f(x, y) = −2/3
y = 2(x − 2)

Exam problem 141(c)

(c) The slope of the level curve f(x, y) = − 2
3 at (2, 0) is

−f ′
1(2, 0)

f ′
2(2, 0)

= 2.

The figure shows the level curve together with its tangent at (2, 0).
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Exam problem 24

(a) To simplify the notation, we write u = −2x − x2 − 2y2. Then the first- and
second-order derivatives of f(x, y) = e−2x−x2−2y2

= eu are

f ′
1(x, y) = −2(1 + x)eu, f ′

2(x, y) = −4yeu,

f ′′
11(x, y) = −2eu + 4(1 + x)2eu, f ′′

12(x, y) = −2(1 + x)(−4y)eu,

f ′′
22(x, y) = −4eu + (−4y)2eu.

Since eu > 0 for all u, the only stationary point is (x0, y0) = (−1, 0). The corre-
sponding value of u is u0 = −2x0 −x2

0 −2y2
0 = 1. With A = f ′′

11(x0, y0) = −2eu0 =
−2e, B = f ′′

12(x0, y0) = 0, and C = f ′′
22(x0, y0) = −4eu0 = −4e, we have A < 0

and AC − B2 = 8e2 > 0. Therefore (−1, 0) is a local maximum point for f .

y

1

x1 2 3

(x, ȳ)

(x, y) S

K

The set S in Problem 24(b)

(c) The problem “maximize f(x, y) for (x, y) in S” has no solution in the interior
of S, since f has no stationary point there. The maximum is therefore attained
somewhere on the boundary of S.

It is clear from the expression for f ′
2(x, y) that f(x, y) is strictly decreasing

with respect to y along each vertical line in S. Thus, for any point (x, y) of S we
have f(x, y) ≤ f(x, ȳ), where ȳ = 1/(1 + x). Hence, if f(x, y) has a maximum
point over S, then that maximum point must be somewhere on the curve K given
by y = 1/(1 + x).

Along K we have f(x, y) = ev(x), where v(x) = −2x − x2 − 2(1 + x)−2, so we
must study ϕ(x) = ev(x) for x ≥ 0. The derivative of ϕ is

ϕ′(x) = ev(x)v′(x) = ev(x)(−2 − 2x + 4(1 + x)−3) = ev(x) 4 − 2(1 + x)4

(1 + x)3
.

We see that ϕ has only one stationary point in [0,∞), namely x2 = 4
√

2 − 1. Also,
ϕ′(x) has the same sign as 2 − (1 + x)4, so ϕ is strictly increasing in [0, x2] and
strictly decreasing in [x2,∞). Thus, ϕ(x) attains its greatest value for x = x2.
The corresponding value of y is y2 = 1/(1 + x2) = 1/ 4

√
2.
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Conclusion: If f(x, y) attains a maximum over S, then the maximum point must
be (x2, y2) and

fmax = f(x2, y2) = f
(

4
√

2 − 1,
1
4
√

2

)
= e1−2

√
2 (≈ 0.1607) .

(d) Why does f have a maximum over S? This was answered almost completely
in part (c). It was shown there that for every point (x, y) in S we have

f(x, y) ≤ f(x, 1/(1 + x)) = ϕ(x).

It follows that
f(x, y) ≤ ϕ(x2) = f(x2, y2)

Hence (x2, y2) is a maximum point (and the only one) for f over S.
There is no minimum point for f over S. Choosing x and y sufficiently large,

we can get f(x, y) as close to 0 as we like, but f(x, y) will always be greater than 0.

Exam problem 110

(a) With the Lagrangian

L(x, y, z) = x2 + y2 + z − λ(x2 + 2y2 + 4z2 − 1)

we get the following necessary first-order conditions:

(1) L′
1(x, y, z) = 2x − 2λx = 0

(2) L′
2(x, y, z) = 2y − 4λy = 0

(3) L′
3(x, y, z) = 1 − 8λz = 0

(4) x2 + 2y2 + 4z2 = 1

(Equation (4) is the constraint.) Equation (1) yields 2x(1 − λ) = 0, so there are
two cases to investigate:

(A) x = 0, (B) λ = 1.

(A) Assume x = 0. From (2) we get 2y(1 − 2λ) = 0, and thus y = 0 or λ = 1/2.

(A.1) If y = 0, then (4) implies 4z2 = 1 − x2 − 2y2 = 1. Therefore z2 = 1/4,
and z = ±1/2. Equation (3) gives λ = 1/8z. We get the following candidates for
extreme points:

P1 : (0, 0, 1/2) with λ = 1/4,

P2 : (0, 0,−1/2) with λ = −1/4,

f(0, 0, 1/2) = 1/2,

f(0, 0,−1/2) = −1/2.

(A.2) If λ = 1/2, then (3) yields z = 1/8λ = 1/4. It then follows from (4) that
2y2 = 1 − x2 − 4z2 = 1 − 0 − 1/4 = 3/4 (remember that we have assumed x = 0!),
and hence y = ±√

3/8 = ±√
6/4. This gives the candidate points

P3 : (0,
√

6/4, 1/4) med λ = 1/2,

P4 : (0,−
√

6/4, 1/4) med λ = 1/2,

f(0,
√

6/4, 1/4) = 5/8,

f(0,−
√

6/4, 1/4) = 5/8.
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(B) Now assume λ = 1. Equation (3) gives z = 1/8, and (2) gives y = 0. From
the constraint (4) we get x2 = 1 − 2y2 − 4z2 = 1 − 4/64 = 15/16, and therefore
x = ±√

15/4. Candidate points:

P5 : (
√

15/4, 0, 1/8) with λ = 1,

P6 : (−
√

15/4, 0, 1/8) with λ = 1,

f(
√

15/4, 0, 1/8) = 17/16,

f(−
√

15/4, 0, 1/8) = 17/16.

Comparing the function values, we see that f attains its maximum value fmaks =
17/16 at the points P5 and P6, and its minimum value fmin = −1/2 at P2. (The ad-
missible set, i.e. the set of points that satisfy the constraint, is closed and bounded,
and since f is continuous, the extreme value theorem guarantees that f will attain
both a maximum and a minimum over the admissible set.)

(b) The change in the maximum value is

Δf∗ = f∗(1 + 0.02) − f∗(1) ≈ λ dc = 1 · 0.02 = 0.02,

cf. formula (14.2.3) on page 496 in EMEA (formula (14.2.5) on page 505 in MA I).

Solutions of the extra problems:

Exam problem 16

f ′
1(x, y) = 2(x + y − 2) + 2(x2 + y − 2)2x = 4x3 + 4xy − 6x + 2y − 4,(a)

f ′
2(x, y) = 2(x + y − 2) + 2(x2 + y − 2) = 2x2 + 2x + 4y − 8,

f ′′
11(x, y) = 12x2 + 4y − 6, f ′′

12(x, y) = f ′′
21(x, y) = 4x + 2, f ′′

22(x, y) = 4.

(b) The stationary points are where f ′
1(x, y) = 0 and f ′

2(x, y) = 0. From the
latter equation we get 2y = −x2 − x + 4, and if we substitute this expression for
2y in the first equation we get

4x3 + 2x(−x2 − x + 4) − 6x + (−x2 − x + 4) − 4 = 0 ⇐⇒ 2x3 − 3x2 + x = 0
⇐⇒ x = 0 or 2x2 − 3x + 1 = 0 ⇐⇒ x = 0 or x = 1 or x = 1/2.

It follows that the stationary points of f are

(x1, y1) = (0, 2), (x2, y2) = (1, 1), (x3, y3) = (1/2, 13/8).

The second-derivative test yields the following results:

(x, y) A = f ′′
11 B = f ′′

12 C = f ′′
22 AC − B2 Type of point

(0, 2) 2 2 4 4 Local min. point

(1, 1) 10 6 4 4 Local min. point

(1/2, 13/8) 7/2 4 4 −2 Saddle point
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This shows that the points (x1, y1) and (x2, y2) are local minimum points. They
are, in fact, global minimum points because f(x1, y1) = f(x2, y2) = −8 and it is
clear from the definition of f that f(x, y) ≥ 0 + 0 − 8 = −8 for all (x, y).

(c) g′(t) = pf ′
1(pt, qt)+qf ′

2(pt, qt) = 4p4t3+6p2qt2+(−6p2+4q2+4pq)t−4p−8q.

If p �= 0, then the t3 term will dominate for large t and g′(t) → ∞ as t → ∞.

If p = 0, then q �= 0 and g′(t) = 4q2t − 8q will obviously tend to ∞ as t → ∞.

Exam problem 33

y

-2

2

4

6

8

10

12

x
-2 2 4 6 8 10 12 14 16 18

IV

I

II

III

A

Exam problem 33 (a)

(b) Since f has partial derivatives everywhere, any minimum points in the set A
must be stationary points in A or boundary points of A. The first-order partial
derivatives of f are

∂f

∂x
= 2x − 8,

∂f

∂y
= −y2 + 8y − 15.

It is clear that f ′
x = 0 if and only if x = 4, and f ′

y = 0 if and only if y = 3 or
y = 5. Thus, the stationary points of f are (4, 3) and (4, 5). Only the last of these
belongs to A.

It is natural to see the boundary of A as composed of four parts, namely
the edges labeled I, II, III, and IV in the figure. We shall investigate these parts
separately.

Along I, y = 0, x ≥ 8, and f(x, y) = f(x, 0) = x2 − 8x. Let g(x) = x2 − 8x. Then
g′(x) = 2x − 8. Since g′(x) > 0 for all x > 8, the value of f(x, y) will increase as
we move right along the edge I. This means that the minimum point of f along I
is (8, 0).
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Along II, y = 8 − x and 0 ≤ x ≤ 8. Let

h(x) = f(x, 8 − x) = −1
3
(8 − x)3 + 4(8 − x)2 − 15(8 − x) + x2 − 8x

= · · · =
x3

3
− 3x2 + 7x − 104

3
.

A minimum point for f(x, y) along II must correspond to a minimum point for
h(x) over the interval [0, 8]. Since

h′(x) = x2 − 6x + 7 = (x − 3)2 − 2,

thee stationary points of h are x = 3 ± √
2. A minimum point for h over [0, 8]

must be one of these points or an end point of the interval. Calculation of function
values gives

h(0) = −104/3 ≈ −34.6667,

h(3 −
√

2) = −(95 − 4
√

2)/3 ≈ −29.7810,

h(3 +
√

2) = −(95 + 4
√

2)/3 ≈ −33.5523,

h(8) = 0.

Hence, the minimum point of f along II is (0, 8).

Along III we have x = 0 and 8 ≤ y ≤ 10. Here f(x, y) = f(0, y) = −y3/3 + 4y2 −
15y. Since

∂

∂y

(
−y3

3
+ 4y2 − 15y

)
= −y2 + 8y − 15 = −(y − 3)(y − 5) < 0

when y > 5, the value of f(x, y) will decrease when we move upwards along III,
and so the minimum point of f along III is (0, 10).

Along IV, y = 10 and x ≥ 0. Here

f(x, y) = f(x, 10) = −250
3

+ x2 − 8x,

which attains its lowest value when x = 4 (and y = 10).

The minimum point of f over A must be among the five points that we have found.
Since

f(4, 5) = −98/3, f(8, 0) = 0, f(0, 8) = −104/3,

f(0, 10) = −250/3, and f(4, 10) = −298/3,

it is clear that the minimum point of f over A is (4, 10), and the minimum value
is −298/3.

The figure shows these five points together with the two points (3±√
2, 5∓√

2)
on II, which correspond to the stationary points of the function h.
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Exam problem 61

We are going to investigate the equation system

ln(x + u) + uv − y2ev + y = 0

u2 − xv = v

around the point P : (x, y, u, v) = (2, 1,−1, 0).

(a) When we differentiate the system, we shall need the differential of xv. The
simplest way to find this is to use that xv = (eln x)v = ev ln x. We get

d(xv) = d(ev ln x) = ev ln xd(v lnx) = xv
(
lnx dv + v d(lnx)

)
= xv

(
lnx dv +

v

x
dx

)
,

and if we now differentiate the given equation system we get

1
x + u

(dx + du) + v du + u dv − 2yev dy − y2ev dv + dy = 0

2u du − xv lnx dv − xv−1v dx = dv

(b) Since we only want the values of the partial derivatives at the point P , we
insert the values of x, y, u, and v in the differentiated equation system. Thus
we shall not bother with finding general expressions for du og dv, but only their
values at P . With x = 2, y = 1, u = −1, and v = 0 we get

1
1
(dx + du) − dv − 2y dy − dv + dy = 0

−2 du − ln 2 dv − 0 = dv

We rearrange this as

du − 2 dv = −dx + dy

−2u − (1 + ln 2) dv = 0

The last equation yields

(∗) dv = − 2
1 + ln 2

du,

and if we insert this into the first equation, we get

du +
4

1 + ln 2
du = −dx + dy ⇐⇒ 5 + ln 2

1 + ln 2
du = −dx + dy.

Hence,

du = −1 + ln 2
5 + ln 2

dx +
1 + ln 2
5 + ln 2

dy,

and therefore
u′

x = −1 + ln 2
5 + ln 2

, u′
y =

1 + ln 2
5 + ln 2

.
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Equation (∗) gives

dv =
2

5 + ln 2
dx − 2

5 + ln 2
dy,

and so
v′

x =
2

5 + ln 2
, v′

y = − 2
5 + ln 2

.

(c) We use the “increment formula” (Norwegian: tilvekstformelen):

u(x + dx, y + dy) ≈ u(x, y) + u′
x(x, y) dx + u′

y(x, y) dy.

This formula yields

u(2 − 0.01, 1 + 0.02) ≈ u(2, 1) + u′
x(2, 1) · (−0.01) + u′

y(2, 1) · 0.02

= −1 +
(
−1 + ln 2

5 + ln 2

)
(−0.01) +

1 + ln 2
5 + ln 2

· 0.02

= −1 +
1 + ln 2
5 + ln 2

· 0.03 ≈ −0.9911.

Exam problem 67

(a) Vi bruker implisitt elastisitering. Av Elx(y2 + ex+1/y) = Elx 3 = 0 f̊ar vi

Elx y2 + Elx ex + Elx e1/y = 0,

som gir

2 Elx y + x +
1
y

Elx

(
1
y

)
= 0

(∗)⇐⇒
(

2 − 1
y

)
Elx y = −x

⇐⇒ Elx y =
x

1
y − 2

=
xy

1 − 2y
.

(Ved (∗) bruker vi kjerneregelen, som gir Elx eu = Elu eu Elx u = u Elx u, med
u = 1/y.)

(b) Differensiering gir likningssystemet

αuα−1 du + βvβ−1 dv = 2β dx + 3y2 dy

αuα−1vβ du + uαβvβ−1 dv − βvβ−1 dv = dx − dy

I punktet P = (x, y, u, v) = (1, 1, 1, 2) f̊ar vi

α du + β2β−1 dv = 2β dx + 3 dy

α2β du = dx − dy

som gir

du =
2−β

α
dx − 2−β

α
dy

dv =
2β − 2−β

β2β−1 dx +
3 + 2−β

β2β−1 dy
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Dermed har vi

∂u

∂x
=

2−β

α
,

∂u

∂y
= −2−β

α
,

∂v

∂x
=

2β − 2−β

β2β−1 ,
∂v

∂y
=

3 + 2−β

β2β−1 .

(c) Av det foreg̊aende ser vi at u′
x(1, 1) = 2−β/α og u′

y(1, 1) = −2−β/α. Videre
har vi u(1, 1) = 1. Tilvekstformelen gir da

u(0.99, 1.01) ≈ u(1, 1) + u′
x(1, 1) · (−0.01) + u′

y(1, 1) · 0.01

= 1 +
2−β

α
· −1
100

− 2−β

α
· 1
100

= 1 − 21−β

100α
.

Exam problem 138

(a) L = ex + y + z − λ1(x + y + z − 1) − λ2(x2 + y2 + z2 − 1)

∂L
∂x

= ex − λ1 − 2λ2x = 0 (i)

∂L
∂y

= 1 − λ1 − 2λ2y = 0 (ii)

∂L
∂z

= 1 − λ1 − 2λ2z = 0 (iii)

Fra (ii) og (iii) følger det at 2λ2y = 2λ2z. Dermed er (A) y = z eller (B) λ2 = 0.
A Hvis z = y, gir bibetingelsene at x2 + 2y2 = 1 og x + 2y = 1. Av den siste
likningen finner vi x = 1−2y som innsatt i x2+2y2 = 1 og ordnet gir 6y2−4y = 0.
Herav y = 0 eller y = 2/3. Dette gir kandidatene (x, y, z) = (1, 0, 0) med λ1 = 1
og λ2 = 1

2 (e − 1), og (− 1
3 , 2

3 , 2
3 ) med λ1 = 1

3 + 2
3e−1/3 og λ2 = 1

2 − 1
2e−1/3.

B Hvis λ2 = 0, gir (ii) at λ1 = 1 som innsatt i (i) gir ex = 1, og dermed x = 0.
Bibetingelsene gir da y2 + z2 = 1 og y + z = 1 med løsninger (y, z) = (0, 1) og
(1, 0). Det gir kandidatene (x, y, z) = (0, 0, 1), (0, 1, 0) med tilhørende λ1 = 1,
λ2 = 0.
For (1, 0, 0) er kriteriefunksjonen lik e.
For (− 1

3 , 2
3 , 2

3 ) er kriteriefunksjonen lik e−1/3 + 4
3 .

For (0, 0, 1) er kriteriefunksjonen lik 2.
For (0, 1, 1) er kriteriefunksjonen lik 2. Her er e−1/3 + 4

3 < 1 + 4
3 = 7

3 < e.
Siden beskrankningsmengden er lukket og begrenset og kriteriefunksjonen er kon-
tinuerlig, fins det et maksimum, og det er i punktet (1, 0, 0).

(b) Δf∗ ≈ λ1 · (0.02) + λ2 · (−0.02) = 0.02 − 0.002 · 1
2
(e − 1) = 0.01(3 − e).
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