ECON3120/4120 – Mathematics 2, spring 2007

Answers to problems handed out on 15 January

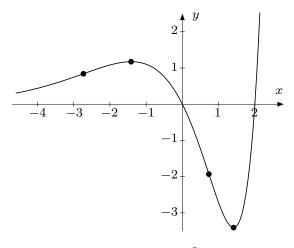
Problem 1

(a)
$$f'(x) = (2x-2)e^x + (x^2-2x)e^x = (x^2-2)e^x,$$
$$f''(x) = 2xe^x + (x^2-2)e^x = (x^2+2x-2)e^x.$$

(b) We can factor f(x) as $f(x) = x(x-2)e^x$. Since a product of two or more factors is 0 precisely when at least one factor is 0, and since $e^x \neq 0$ for all x, it follows that $f(x) = 0 \iff x = 0$ or x = 2. You can see from the figure below that the graph of f intersects the x-axis precisely at the two points corresponding to x = 0 and x = 2.

The stationary points of f are the solutions of f'(x) = 0, that is, the points $x = \pm \sqrt{2}$ ($\approx \pm 1.4142$). A sign diagram (= "fortegnsdiagram") for f'(x) reveals that f is increasing in the interval $(-\infty, -\sqrt{2}]$, decreasing in $[-\sqrt{2}, \sqrt{2}]$, and increasing again in $[\sqrt{2}, \infty)$. Therefore $x_1 = -\sqrt{2}$ is a local maximum point for f and $x_2 = \sqrt{2}$ is a local minimum point. We could also see this by observing that $f''(x_1) < 0$ and $f''(x_2) > 0$.

The equation f''(x) = 0 has the roots $x = -1 \pm \sqrt{3}$ ($\approx -1 \pm 1.73205$). These two points are inflection points (= "vendepunkter") for f, since f''(x) equals 0 there and changes sign around them. In the interval $(-\infty, -1 - \sqrt{3}]$ we have $f''(x) \ge 0$, and so f is convex there. In $[-1 - \sqrt{3}, -1 + \sqrt{3}]$, f is concave because $f''(x) \le 0$, and finally $f''(x) \ge 0$ for $x \ge -1 + \sqrt{3}$, so f is convex in the interval $[-1+\sqrt{3},\infty)$. Both the local extreme points and the inflection points are indicated by the corresponding points on the graph of f.



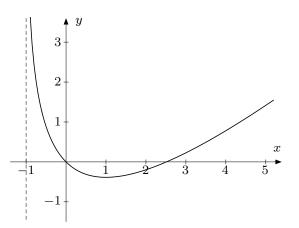
The graph of $f(x) = (x^2 - 2x)e^x$.

Problem 2

(a) g(x) is defined for x > -1, that is, its domain of definition (= "definisjons-område") is the interval $(-1, \infty)$.

(b)
$$g'(x) = 1 - \frac{2}{x+1} = \frac{x-1}{x+1}$$
, $g''(x) = \frac{2}{(x+1)^2}$.
(c) It is easy to see that $g'(x) \begin{cases} < 0 & \text{if } -1 < x < 1, \\ = 0 & \text{if } x = 1, \\ > 0 & \text{if } x > 1. \end{cases}$

It follows that g is strictly decreasing in (-1, 1] and strictly increasing in $[1, \infty)$. Therefore x = 1 is a global minimum point for g. There are no other local or global extreme points. Since g''(x) > 0 for all x > -1, the function is convex over all of $(-1, \infty)$ and has no inflection points.



The graph of $g(x) = x - 2\ln(x+1)$.

The figure shows the graph of g. It is clear that $\lim_{x \to (-1)^+} g(x) = \infty$, and the graph therefore has a vertical asymptote x = -1. It can also be shown that $\lim_{x\to\infty} g(x) = \infty$. To show that, write the function as $g(x) = x\left(1 - \frac{2\ln(x+1)}{x}\right)$ and show that the expression inside the big parenthesis tends to 1. (Use l'Hôpital's rule for ∞/∞ .)

Problem 3

 $h(x, y) = \ln(y - x^2)$ is defined when $y > x^2$, that is, at all points above (but not on) the parabola $y = x^2$ in the xy-plane.

Problem 4

If $\frac{(x+2)\ln(1+x)}{x-2} = 0$, then we must have $(x+2)\ln(1+x) = 0$. A product is equal to 0 if and only if at least one factor is 0, so we must have either x+2=0 or $\ln(1+x)=0$, i.e. x=-2 or x=0. However, if x=-2 we get $1+x=-1 \le 0$, and then $\ln(1+x)$ is not defined, so the left-hand side of the given equation simply does not make sense. Hence, the equation has exactly one solution, namely x=-1.

Now, you didn't have x = 2 as a solution, did you? I hope not. Some people seem to believe that A/B = 0 if and only if A = 0 or B = 0. But this is wrong, of course. If B = 0, then the expression A/B does not make sense at all.