Seminar 11, week 17

Approximation

Exercise 1

Calculate the Taylor formula up to polynomial power 2 and 3 of the following functions, and compare the approximate values with the function values at the point $x=2$. Which is the best approximate of the two powers?
a) $f(x)=x e^{x}$
b) $f(x)=\frac{1}{1+x}$
c) $f(x)=\frac{1}{(1+x)^{2}}$

Homogeneous and homothetic functions

Exercise 2

Find the degree of homogeneity of the following funcions
a) $x^{4}+x^{2} y^{2}$
b) $A x^{a} y^{b}$
c) $\frac{\sqrt{x}+\sqrt{y}+\sqrt{z}}{x+y+z}$

Exercise 3

Study the homogeneity property of $f(x, y)=\frac{x y}{x^{2}+y^{2}}$, and examine the Euler's homogeneous function theorem.

Exercise 4

Decide the degree of homogeneity of

$$
f(x, y)=a \ln \left(\frac{g(x, y)}{x}\right)
$$

when the degree of homogeneity of $g(x, y)$ is equal to 1 .

Exercise 5

Is the function $F(x, y)=x y+1$ homogeneous? Is it homothetic?

Kuhn-Tucker

Exercise 6

a) Find the best candidate for the problem of maximizing $f(x, y)=\ln (x+1)+\ln (y+1)$ subject to $x+2 y \leq 5 / 2$ and $x+y \leq 2$.
b) Verify that this candidate solves the problem (i.e. satisfies some sufficient condition).

Exercise 7

Autumn Exam 2006, Problem 2b.

