Approximation

Exercise 1

Calculate the Taylor formula up to polynomial power 2 and 3 of the following functions, and compare the approximate values with the function values at the point x = 2. Which is the best approximate of the two powers?

a)
$$f(x) = xe^x$$

b)
$$f(x) = \frac{1}{1+x}$$

c) $f(x) = \frac{1}{(1+x)^2}$

Homogeneous and homothetic functions

Exercise 2

Find the degree of homogeneity of the following funcions

a)
$$x^4 + x^2 y^2$$

b) $Ax^a y^b$
c) $\frac{\sqrt{x} + \sqrt{y} + \sqrt{z}}{x + y + z}$

Exercise 3

Study the homogeneity property of $f(x,y) = \frac{xy}{x^2+y^2}$, and examine the Euler's homogeneous function theorem.

Exercise 4

Decide the degree of homogeneity of

$$f(x,y) = a \ln(\frac{g(x,y)}{x})$$

when the degree of homogeneity of g(x, y) is equal to 1.

Exercise 5

Is the function F(x, y) = xy + 1 homogeneous? Is it homothetic?

Kuhn-Tucker

Exercise 6

- a) Find the best candidate for the problem of maximizing $f(x, y) = \ln(x + 1) + \ln(y + 1)$ subject to $x + 2y \le 5/2$ and $x + y \le 2$.
- b) Verify that this candidate solves the problem (i.e. satisfies some sufficient condition).

Exercise 7

Autumn Exam 2006, Problem 2b.