The Leibniz rule: ECON3120/4120 curriculum

About this document: The Leibniz rule for differentiating integrals is now curriculum. This note clarifies what to expect (this semester!).

What you need to know: Let $a=a(x), b=b(x)$ and $f=f(x, t)$ be given functions. If $\quad F(x)=\int_{a(x)}^{b(x)} f(x, t) d t \quad$ (note: integration wrt. t), then

$$
\begin{equation*}
F^{\prime}(x)=f(x, b(x)) \cdot b^{\prime}(x)-f(x, a(x)) \cdot a^{\prime}(x)+\int_{a(x)}^{b(x)} \frac{\partial}{\partial x} f(x, t) d t \tag{*}
\end{equation*}
$$

In this Wikipedia permalink the "curriculum" part stops before the "Contents" table.
What you need to be able to do: Calculate derivatives when you are asked and when you need it, just like any other differentiation rule.

Why it works? An application of the chain rule: A function $H(x, y, z)$ has differential $d H=H_{x}^{\prime} d x+H_{y}^{\prime} d y+H_{z}^{\prime} d z$, and if $y=a(x)$ and $z=b(x)$, then $d y=a^{\prime}(x) d x$ and $d z=b^{\prime}(x) d x$, so that $F(x)=H(x, a(x), b(x))$ has differential $d F=\left(H_{x}^{\prime}+H_{y}^{\prime} a^{\prime}+H_{z}^{\prime} b^{\prime}\right) d x$. Let $H(x, y, z)=\int_{y}^{z} f(x, t) d t$ and calculate partial derivatives.

- For H_{z}^{\prime}, note that x is treated as constant when we integrate with respect to t. If $G^{\prime}(t)=g(t)$, then $\int_{y}^{z} g(t)=G(z)-G(y)$, and the derivative wrt. z is $G^{\prime}(z)=g(z)$. If we now introduce a constant in the notation and write $f(x, t)$ for this " $g(t)$ with x as parameter", then it is the t variable that should be put equal to z. So

$$
H_{z}^{\prime}(x, y, z)=f(x, z)
$$

- Analogously, $H_{y}^{\prime}(x, y, z)=-f(x, y)$ because y is the lower limit (recall $\int_{y}^{z}=-\int_{z}^{y}$).
- From the definition of partial derivatives, $H_{x}^{\prime}(x, y, z)$ equals

$$
\frac{\partial}{\partial x} \int_{y}^{z} f(x, t) d t=\lim _{\epsilon \rightarrow 0} \frac{\int_{y}^{z} f(x+\epsilon, t) d t-\int_{y}^{z} f(x, t) d t}{\epsilon}=\lim _{\epsilon \rightarrow 0} \int_{y}^{z} \frac{f(x+\epsilon, t)-f(x, t)}{\epsilon} d t
$$ and by moving the "lim" inside the integral sign the integrand becomes $\frac{\partial}{\partial x} f(x, t)$.

Inserting in $F^{\prime}=H_{x}^{\prime}+H_{y}^{\prime} a^{\prime}+H_{z}^{\prime} b^{\prime}$ yields the three terms on the right-hand side of (*).

[^0]Examples/exercises: This used to be Mathematics 3 curriculum, so problems can be found in the Mathematics 3 compendium The following are just examples:
(1) Let $F(x)=\int_{x^{2}}^{x} t e^{t e^{x}} d t$. Show that $F^{\prime}(0)=0$, with and without using Leibniz's rule. Answer: By the Leibniz rule, $b(0) e^{b(0) e^{0}} b^{\prime}(0)-a(0) e^{a(0) e^{0}} a^{\prime}(0)+\int_{a(0)}^{b(0)}\left[t e^{t e^{x}} \cdot t e^{x}\right]_{x=0} d t$. But $b(0)=a(0)=0$, so all the terms are zero (the integral because it is \int_{0}^{0}). Solving without: exercise. Take note that it is a bit more work, maybe?
(2) Let $F(x)$ as in Example 1. Find $F^{\prime \prime}(0)$.

Answer: The formula yields $F^{\prime}(x)=b(x) e^{b(x) e^{x}} b^{\prime}(x)-a(x) e^{a(x) e^{x}} a^{\prime}(x)+\int_{a(x)}^{b(x)}\left[t e^{t e^{x}} \cdot t e^{x}\right] d t$, with $b(x)=x$ and $a(x)=x^{2}$; so, $F^{\prime}(x)=x e^{x e^{x}}-2 x^{3} e^{x^{2} e^{x}}+\int_{x^{2}}^{x}\left[t e^{t e^{x}} \cdot t e^{x}\right] d t$. The derivative at zero of $x e^{x e^{x}}$ is $\lim _{x \rightarrow 0} \frac{x e^{x e^{x}}}{x}=1$ (exercise (i): what did I just do?) and the derivative zero of $2 x^{3} e^{x^{2} e^{x}}$ is $\lim _{x \rightarrow 0} 2 x^{2} e^{x^{2} e^{x}}=0$ (exercise (ii): as (i) - what did I just do?) To differentiate the integral term, use the Leibniz rule again. Exercise (iii): show that you get zero from that term, so the answer is 1 IT
(3) This you "need" the Leibniz rule for: Find $\frac{d}{d x} \int_{1}^{e} t^{-1} e^{\left(1+x^{2}\right) t} d t$.

Answer: We get $\int_{1}^{e} t^{-1} \frac{\partial}{\partial x} e^{\left(1+x^{2}\right) t} d t=\int_{1}^{e} 2 x e^{\left(1+x^{2}\right) t} d t$. Notice that now the bothersome t^{-1} is gone! The rest is routine: $\left.\frac{2 x}{1+x^{2}}\right|_{t=1} ^{t=e} e^{\left(1+x^{2}\right) t}=\frac{2 x}{1+x^{2}}\left[e^{\left(1+x^{2}\right) e}-e^{1+x^{2}}\right]$
(4) More generally: Given continuously differentiable functions a, b and w, which do never hit zero. Explain how to calculate $\frac{d}{d x} \int_{a(x)}^{b(x)} t^{-1} e^{t w(x)} d t$.
Answer: We get $e^{b(x) w(x)} b^{\prime}(x) / b(x)-e^{a(x) w(x)} a^{\prime}(x) / a(x)+w^{\prime}(x) \int_{a(x)}^{b(x)} e^{t w(x)} d t$. The latter integral is solved by the substitution $u=t w$.
(5) Let $p(t)=\dot{p}(t)+\int_{0}^{\sqrt{p(t)}} e^{q^{2}-p(t)} d q$. Deduce (but do not try to solve!) a second-order differential equation for p without evaluating the integral.
Answer: Beware that now the variable to be integrated is called q ! We have $\dot{p}=$ $\ddot{p}+e^{p-p} \cdot \frac{\dot{p}}{2 \sqrt{p}}+\int_{0}^{\sqrt{p}} e^{q^{2}-p} \cdot(-\dot{p}) d q$. The last term is $-\dot{p} \cdot(p-\dot{p})$. Gathering terms, we get $\left(1+p-\frac{1}{2 \sqrt{p}}\right) \dot{p}-(\dot{p})^{2}=\ddot{p}$.
Alternatively: rewrite as $\dot{p}+e^{-p} \int_{0}^{\sqrt{p}} e^{q^{2}} d q$. Then $\dot{p}=\ddot{p}-\dot{p} e^{-p} \int_{0}^{\sqrt{p}} e^{q^{2}} d q+e^{-p} \frac{d}{d t} \int_{0}^{\sqrt{p}} e^{q^{2}} d q$. The second term is $-\dot{p}(p-\dot{p})$ again. For the third, use Leibniz's rule: $e^{-p} e^{p} \cdot \frac{d}{d t} \sqrt{p(t)}$.
\$http://www.uio.no/studier/emner/sv/oekonomi/ECON4140/oldexams/M3Compendium.pdf problems 4-01/02/10/11 (and, possibly with some hints, -03 and -04 , which involve "unknown" functions).
${ }^{\top}$ An alternative, and somewhat more sophisticated approach on the integral, using the intermediate value theorem: for fixed x, the integral is $T^{2} e^{x+T e^{x}} \cdot\left[x-x^{2}\right]$ for some T between x^{2} and x (make the "area under graph" argument, where the interval has width $x^{2}-x$). Divide by x (as we seek the limit of $F^{\prime}(x) / x$ as per exercises (i) and (ii)) to get $T^{2} e^{x+T e^{x}} \cdot[1-x] . T$ is not known when $x>0$, but is squeezed between x^{2} and x, and must $\rightarrow 0$ as $x \rightarrow 0$ (like an argument in the last part of Term Paper Problem 2!). So we get 0 from the integral and again, we are left with only the contribution $\lim _{x \rightarrow 0} b(x) e^{b(x) e^{x}} b^{\prime}(x)=1$.

[^0]: *in Mathematics 2, they will be assumed "sufficiently nice", and no precise conditions will be given
 \dagger https://en.m.wikipedia.org/w/index.php?title=Leibniz_integral_rule\&oldid=804035562 for mobile-view version or for copy/paste. Note the permalink, immune to Wikipedia edits.
 ${ }^{\ddagger} y e s$, you are allowed to do that in Mathematics 2, as all functions are nice enough; no, it is not "obvious"

