University of Oslo / Department of Economics / NCF

version 2018–04–04

The Leibniz rule: ECON3120/4120 curriculum

About this document: The Leibniz rule for differentiating integrals is now curriculum. This note clarifies what to expect (this semester!).

What you need to know: Let a = a(x), b = b(x) and f = f(x, t) be given functions^{*}. If $F(x) = \int_{a(x)}^{b(x)} f(x, t) dt$ (note: integration wrt. t), then $F'(x) = f(x, b(x)) \cdot b'(x) - f(x, a(x)) \cdot a'(x) + \int_{a(x)}^{b(x)} \frac{\partial}{\partial x} f(x, t) dt$ (*)

In this Wikipedia permalink[†] the "curriculum" part stops before the "Contents" table.

What you need to be able to *do*: Calculate derivatives when you are asked and when you need it, just like any other differentiation rule.

Why it works? An application of the chain rule: A function H(x, y, z) has differential $dH = H'_x dx + H'_y dy + H'_z dz$, and if y = a(x) and z = b(x), then dy = a'(x) dx and dz = b'(x) dx, so that F(x) = H(x, a(x), b(x)) has differential $dF = \left(H'_x + H'_y a' + H'_z b'\right) dx$. Let $H(x, y, z) = \int_y^z f(x, t) dt$ and calculate partial derivatives.

• For H'_z , note that x is treated as constant when we integrate with respect to t. If G'(t) = g(t), then $\int_y^z g(t) = G(z) - G(y)$, and the derivative wrt. z is G'(z) = g(z). If we now introduce a constant in the notation and write f(x,t) for this "g(t) with x as parameter", then it is the t variable that should be put equal to z. So

$$H'_z(x, y, z) = f(x, z)$$

- Analogously, $H'_y(x, y, z) = -f(x, y)$ because y is the lower limit (recall $\int_y^z = -\int_z^y$).
- From the definition of partial derivatives, $H'_x(x, y, z)$ equals

$$\frac{\partial}{\partial x} \int_{y}^{z} f(x,t) \, dt = \lim_{\epsilon \to 0} \frac{\int_{y}^{z} f(x+\epsilon,t) \, dt - \int_{y}^{z} f(x,t) \, dt}{\epsilon} = \lim_{\epsilon \to 0} \int_{y}^{z} \frac{f(x+\epsilon,t) - f(x,t)}{\epsilon} \, dt$$

and by moving the "lim" inside the integral sign[‡], the integrand becomes $\frac{\partial}{\partial x}f(x,t)$. Inserting in $F' = H'_x + H'_y a' + H'_z b'$ yields the three terms on the right-hand side of (*).

^{*}in Mathematics 2, they will be assumed "sufficiently nice", and no precise conditions will be given

[†] https://en.m.wikipedia.org/w/index.php?title=Leibniz_integral_rule&oldid=804035562 for mobile-view version or for copy/paste. Note the permalink, immune to Wikipedia edits.

^{$\ddagger}yes$, you are allowed to do that in Mathematics 2, as all functions are nice enough; no, it is not "obvious"</sup>

Examples/exercises: This used to be Mathematics 3 curriculum, so problems can be found in the Mathematics 3 compendium,[§] The following are just examples:

- (1) Let $F(x) = \int_{x^2}^x te^{te^x} dt$. Show that F'(0) = 0, with and without using Leibniz's rule. Answer: By the Leibniz rule, $b(0)e^{b(0)e^0}b'(0) - a(0)e^{a(0)e^0}a'(0) + \int_{a(0)}^{b(0)} \left[te^{te^x} \cdot te^x\right]_{x=0} dt$. But b(0) = a(0) = 0, so all the terms are zero (the integral because it is \int_0^0). Solving without: exercise. Take note that it is a bit more work, maybe?
- (2) Let F(x) as in Example 1. Find F''(0). Answer: The formula yields $F'(x) = b(x)e^{b(x)e^x}b'(x) - a(x)e^{a(x)e^x}a'(x) + \int_{a(x)}^{b(x)} [te^{te^x} \cdot te^x]dt$, with b(x) = x and $a(x) = x^2$; so, $F'(x) = xe^{xe^x} - 2x^3e^{x^2e^x} + \int_{x^2}^x [te^{te^x} \cdot te^x]dt$. The derivative at zero of xe^{xe^x} is $\lim_{x\to 0} \frac{xe^{xe^x}}{x} = 1$ (exercise (i): what did I just do?) and the derivative zero of $2x^3e^{x^2e^x}$ is $\lim_{x\to 0} 2x^2e^{x^2e^x} = 0$ (exercise (ii): as (i) – what did I just do?) To differentiate the integral term, use the Leibniz rule again. Exercise (iii): show that you get zero from that term, so the answer is 1.[¶]
- (3) This you "need" the Leibniz rule for: Find $\frac{d}{dx} \int_1^e t^{-1} e^{(1+x^2)t} dt$. Answer: We get $\int_1^e t^{-1} \frac{\partial}{\partial x} e^{(1+x^2)t} dt = \int_1^e 2x e^{(1+x^2)t} dt$. Notice that now the bothersome t^{-1} is gone! The rest is routine: $\frac{2x}{1+x^2}\Big|_{t=1}^{t=e} e^{(1+x^2)t} = \frac{2x}{1+x^2} \Big[e^{(1+x^2)e} - e^{1+x^2} \Big]$
- (4) More generally: Given continuously differentiable functions a, b and w, which do never hit zero. Explain how to calculate $\frac{d}{dx} \int_{a(x)}^{b(x)} t^{-1} e^{tw(x)} dt$. Answer: We get $e^{b(x)w(x)}b'(x)/b(x) - e^{a(x)w(x)}a'(x)/a(x) + w'(x) \int_{a(x)}^{b(x)} e^{tw(x)} dt$. The latter integral is solved by the substitution u = tw.
- (5) Let $p(t) = \dot{p}(t) + \int_0^{\sqrt{p(t)}} e^{q^2 p(t)} dq$. Deduce (but do *not* try to solve!) a second-order differential equation for p without evaluating the integral. Answer: Beware that now the variable to be integrated is called q! We have $\dot{p} = \ddot{p} + e^{p-p} \cdot \frac{\dot{p}}{2\sqrt{p}} + \int_0^{\sqrt{p}} e^{q^2-p} \cdot (-\dot{p}) dq$. The last term is $-\dot{p} \cdot (p - \dot{p})$. Gathering terms, we get $(1 + p - \frac{1}{2\sqrt{p}})\dot{p} - (\dot{p})^2 = \ddot{p}$. Alternatively: rewrite as $\dot{p} + e^{-p} \int_0^{\sqrt{p}} e^{q^2} dq$. Then $\dot{p} = \ddot{p} - \dot{p}e^{-p} \int_0^{\sqrt{p}} e^{q^2} dq + e^{-p} \frac{d}{dt} \int_0^{\sqrt{p}} e^{q^2} dq$. The second term is $-\dot{p}(p - \dot{p})$ again. For the third, use Leibniz's rule: $e^{-p}e^p \cdot \frac{d}{dt}\sqrt{p(t)}$.

[§]http://www.uio.no/studier/emner/sv/oekonomi/ECON4140/oldexams/M3Compendium.pdf problems 4-01/02/10/11 (and, possibly with some hints, -03 and -04, which involve "unknown" functions).

[¶]An alternative, and somewhat more sophisticated approach on the integral, using the intermediate value theorem: for fixed x, the integral is $T^2 e^{x+Te^x} \cdot [x-x^2]$ for some T between x^2 and x (make the "area under graph" argument, where the interval has width $x^2 - x$). Divide by x (as we seek the limit of F'(x)/x as per exercises (i) and (ii)) to get $T^2 e^{x+Te^x} \cdot [1-x]$. T is not known when x > 0, but is squeezed between x^2 and x, and must → 0 as $x \to 0$ (like an argument in the last part of Term Paper Problem 2!). So we get 0 from the integral and again, we are left with only the contribution $\lim_{x\to 0} b(x)e^{b(x)e^x}b'(x) = 1$.