Exercises for the last lecture

Rice ex. 2.67
Rice ex. 4.55
Rice ex. 8.14 (a-c)
[Hints: Note that if $g(x)$ is an integrable function that is symmetric about origo, i.e. $g(-x)=-g(x)$, then $\int_{-\infty}^{\infty} g(x) d x=0$. Hence $\mathrm{E}(X)=0$. You will also need $\mathrm{E}|X|$ and $\mathrm{E}\left(X^{2}\right)$. Note that if $h(x)$ is symmetric about the Y -axis, then $\int_{-\infty}^{\infty} h(x) d x=2 \int_{0}^{\infty} h(x) d x$. Hence, for example,
$\mathrm{E}|X|=\int_{-\infty}^{\infty} \frac{1}{2 \sigma}|x| e^{\left.-\frac{1}{\sigma} x \right\rvert\,} d x=2 \int_{0}^{\infty} \frac{1}{2 \sigma} x e^{-\frac{1}{\sigma} x} d x$ etc., and use the exponential distribution.]

Rice ex. 8.51
[Hint for a. If A denotes the event that two twins are identical, then, from the text, $P(M M \mid A)=1 / 2$ and $P(M M \mid \bar{A})=1 / 4$. Hence $P(M M)=P(M M \mid A) P(A)+P(M M \mid \bar{A}) P(\bar{A})$ etc. Hint for \mathbf{b} : Note that (n_{1}, n_{2}, n_{3}) must be multinomial with $n=n_{1}+n_{2}+n_{3}$ trials. Note also that $n_{1}+n_{2}$ must be binomially distributed (why?)]

Rice ex. 9.35
[Hint: Assume that the frequencies in the table are multinomial with 13 cells and cell probabilities, $p_{0}, p_{1}, p_{2}, \ldots, p_{12}$. Under H_{0} these are binomial probabilities. To calculate binomial (bin(12,q)-probabilities in stata, use the function $\operatorname{Binomial}(12, \mathrm{x}, \mathrm{q})$ that calculates $P(X \geq x)$. Hence, if the numbers, $0,1,2, \ldots, 12$ are collected in the column z, the probabilities $P(X=x)$ can be generated by the command: gen $r=\operatorname{Binomial}(12, z, q)-\operatorname{Binomial}(12, z+1, q)$, where q is the success-probability.]

