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Lecture note to Rice chapter 5: Limit theorems
Section 4.5 in Rice on moment generating functions is a technical prelude to

the Central limit theorem: that the empirical mean X based on n independent
observations is approximately normally distributed, and that the approximation
is better the larger the sample size n, and also the closer the common distribution
of the observations is to the normal distribution. The essential facts of the
moment generating function are:

Definition : MX(t) = E
£
etX

¤
Uniqueness (Property A, p143) : MX(t) =MY (t) for t ∈ (−a, a)⇒ X

D
= Y

Moments (Property B, p144) : M
(r)
X (0) = E [Xr]

Continuity (Theorem A, p167) : MXn(t)→MX(t)⇒ Xn
D→ X

The notation here is

Definition : X
D
= Y when X and Y have the same distribution,

Definition : Xn
D→ X when FXn(x)→ FX(x) for all continuity points x of FX ,

and Xn
D→ X is said to be convergence in distribution.

The following version of the Central limit theorem is saying the same as
Theorem B, p169, but it is formulated in terms of the mean of standardized
observations rather than a sum of unstandardized ones.

Theorem 1 (Central limit theorem) Let X1,X2, · · · be independent and iden-
tically distributed (i.i.d.) with zero expectation and unit variance. The empirical
mean based on a sample of size n, Xn =

1
n

Pn
i=1Xi has approximately a normal

distribution with zero mean and variance 1/n. That is,

√
nXn

D→ Z

where Z has a standard normal distribution.
Proof. Let M(t) = E

£
etXi

¤
be the moment generating function, which is con-

tinuous and twice differentiable around 0 since the expectation and the variance
exist. M

0
X(0) = EXi = 0 and M

00

X(0) = EX2 = var(Xi) + (EX)
2 = 1 + 0 = 1.

Since t
√
nXn =

t√
n

Pn
i=1Xi =

t√
n
Sn, by definition

M√nXn
(t) =MSn

µ
t√
n

¶
.

By independence MSn (r) = E
£
erSn

¤
= E

£Qn
i=1 e

rXi
¤
=
Qn

i=1E
£
erXi

¤
=

M(r)n. Thus,

M√nXn
(t) =M

µ
t√
n

¶n
.

1



As n→∞, t√
n
→ 0. We therefore have by second order Taylor expansion

M

µ
t√
n

¶
=M(0) +

t√
n
M

0
(0) +

1

2

t2

n
M

00
(0) + εn = 1 +

1

2

t2

n
+ εn.

Since εn can be shown to tend faster to zero than 1
2
t2

n , we have

M

µ
t√
n

¶n
→ e

1
2 t

2

=MZ(t).

By the continuity property and the uniqueness property of the moment generating
function, we conclude that

√
nXn

D→ Z.

The proof given here is very much the proof in Rice. It is included since
it is so beautiful and so important. It was Laplace who around 1800 played
with these concepts and realized that EXi = 0 ⇒M

0
X(0) = 0, and therefore (i)

that two terms are needed in the Taylor expansion, and (ii) it is
√
nXn and not

Xn that has moment generating function approximately
³
1 + 1

2
t2

n

´n
, which is

needed to get the desired result.
If Yi are i.i.d. with expectation µ and standard deviation σ, the standard-

ized variables Xi = (Yi − µ) /σ satisfies the Central limit theorem. Therefore√
nY n−µ

σ

D→ Z, which means that Y n is approximately normally distributed
with expectation µ and variance σ2/n.
Rice does not mention the simpler concept convergence in probability to a

constant c, denoted P→ c. The basic properties are

Definition: Xn
P→ c⇔ P (|Xn − c| > ε)→ 0 for all ε > 0

Continuity: Xn
P→ c⇒ g (Xn)

P→ g(c) when g is continuous at c.

Try to prove the continuity property of convergence in probability.
An important question for an estimator is whether it is consistent, that is,

whether it converge in probability to the correct value whatever that value is.
Let bθn be an estimator for the parameter θ based on a sample of size n.
Definition: bθn is consistent whenever bθn P→ θ for all possible values of θ.

Theorem 2 (Law of large numbers) Let X1,X2, · · · be i.i.d. with expecta-
tion µ. Then Xn

P→ µ.
Proof. Parallel to the proof of the Central limit theorem, MXn

(t) =M
¡
t
n

¢n
=³

M(0) + t
nM

0
(0) + εn

´n
=
¡
1 + t

nµ+ εn
¢n → etµ = MY (t) where Y is a de-

generate random variable with all its mass at µ, P (Y = µ) = 1. By continuity
and uniqueness of moment generating function, we have proved the theorem.
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Rice could also have included Slutsky’s lemma. This lemma is extensively
used in statistics and econometrics in conjunction with the Law of large numbers,
convergence in probability and the Central limit theorem, to prove that certain
statistics are approximately normally distributed in large samples. The example
at the end of this note illustrates its use.

Lemma 3 (Slutsky) Let {Ai} , {Bi} and {Xi} be three sequences of random
variables (or constants). If An

P→ a, Bn
P→ b and Xn

D→ X, then Yn = An +

BnXn
D→ a+ bX

The proof of this lemma requires an ε and δ argument that is tedious, but
not terribly exciting. It is excluded here. That An and Bn converge in prob-
ability means that their probability mass pile up closer and closer to a and b
respectively. The distribution of Yn must therefore nearly be the same as that
of a+ bXn, and since Xn converge in distribution, Slutsky’s conclusion is most
reasonable.

Example 4 Consider a situation where unemployed have a constant rate of be-
ing employed. This is perhaps not very realistic because of individual differences
between the unemployed. Some are more attractive than others, and some are
less active in their job search. Disregarding this individual heterogeneity, and
assuming stability in the labour marked, the assumption of a constant rate θ is
at least a starting point. Let X be the waiting time until employment for a per-
son that just lost employment. That the employment rate is constant means that
the person has the same conditional probability of being employed in the waiting
time interval < x, x+ t] given that the person was still unemployed after having
waited x units of time, regardless of x. For small t, this conditional probability
is θt to make the employment rate θ : P (X ≤ x + t|X > x)/t → θ. You can
show that X has this property if it is exponentially distributed with density

f(x) = θe−θx x > 0.

We know that E (X) = 1/θ and var(X) = 1/θ2. The moment generating func-
tion of X is M(t) =

R∞
0

etxθe−θxdx = θ/(θ − t) for t < θ. Thus, M
0
(0) = 1/θ

and M
00
(0) = 2/θ2 = E(X2) making var(X) = 1/θ2. Assume now that you

shall observe a large sample of unemployment spells, X1,X2, · · · ,Xn for the
purpose of estimating θ = 1/E(X). From this last equality, bθ = 1/X is a nat-
ural estimator. What are the statistical properties of bθ? By the Law of large
numbers, Xn

P→ 1/θ. Since the function g(x) = 1/x is continuous at any x > 0,bθn = 1/Xn
P→ g(1/θ) = θ whatever θ > 0 is. The estimator is consistent.

Is it also approximately normally distributed? And what is its approximate
expectation and variance for large n? From the Central limit theorem,

√
n(θ

Xn − 1) D→ Z, the standard normal. Indeed, θXi − 1 have expectation 0 and
variance 1. Therefore, by Slutsky’s lemma,

√
n
³bθn − θ

´
= − 1

Xn

√
n(θXn − 1) D→ −θZ.
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Figure 1: Density of Y = bθn for θ = 10 and for various values of n, and
approximating normal densities (dashed lines).

The conclusion is thus that bθn is approximately normally distributed with expec-
tation θ and with standard deviation θ/

√
n. The moment generating function

tells us that

MXn
(t) =

µ
nθ

nθ − t

¶n
.

Why? This is the moment generating function of the gamma distribution with
shape parameter α = n and scale parameter λ = nθ. The probability density ofbθn = Y is thus

f(y) =
(nθ)n

Γ(n)
y−n−2e−

nθ
y y > 0.

This density and the density of the approximating normal distribution is plotted
for θ = 10 and n=3,9,27 and 81 in the figure. Note the change in the vertical
scale in the four diagrams.
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