HG Oct. 04

ECON 4130

Supplementary Exercises II

Exercise 5

a) Let $Z \sim N(0, 1)$ with cdf, $\Phi(x) = P(Z \le x)$. Put Y = a + bZ where *a* and *b* are constants. Show that the cdf of *Y* is

$$F_{Y}(y) = P(Y \le y) = \begin{cases} \Phi\left(\frac{y-a}{b}\right) & \text{if } b > 0\\ 1 - \Phi\left(\frac{y-a}{b}\right) & \text{if } b < 0 \end{cases}$$

[**Hint:** Manipulate $P(Y \le y)$.] This implies that $Y \sim N(a, b^2)$. Why?

b) Let Z_n is a r.v. with cdf, $F_n(x) = P(Z_n \le x)$ for n = 1, 2, ..., and suppose that $Z_n \xrightarrow{D}_{n \to \infty} Z \sim N(0, 1)$. Show by using the definition of convergence in distribution directly, that $Y_n = a + bZ_n \xrightarrow{D}_{n \to \infty} Y \sim N(a, b^2)$ [Hint: Treat the cases, b > 0, b < 0 separately, and look at $P(Y_n \le y)$.]

c) Let A_n, B_n be r.v.'s such that, $A_n \xrightarrow{P}_{n \to \infty} a$, and $B_n \xrightarrow{P}_{n \to \infty} b$. Show that $Y_n = A_n + B_n Z_n \xrightarrow{D}_{n \to \infty} Y \sim N(a, b^2)$. [Hint: Use Slutzky's lemma.]

d) Let θ be an unknown parameter in a model and $\hat{\theta}$ an estimator based on *n* observations. Suppose we have proved that $\sqrt{n}(\hat{\theta}-\theta) \xrightarrow[n \to \infty]{D} X \sim N(0, b^2)$ where *b* is some constant. Show that this implies that $\hat{\theta}$ must be a consistent estimator for θ .

[**Hint:** Set $X_n = \sqrt{n}(\hat{\theta} - \theta)$, solve with respect to $\hat{\theta}$, and use Slutzky. Also properties (3) and (5) in "Lecture notes II to Rice chap. 5" may be relevant.]

Exercise 6 (the δ -method for determining asymptotic normality of estimators).

Let θ be an unknown parameter in a model and $\hat{\theta}$ an estimator based on *n* observations. Suppose we have proved that $\sqrt{n}(\hat{\theta}-\theta) \xrightarrow[n \to \infty]{D} X \sim N(0, b^2)$ where *b* is some constant. Suppose that what we are really interested in is another transformed parameter, $\gamma = g(\theta)$. We assume that g(x) is a continuously differentiable function everywhere where θ and $\hat{\theta}$ may take their values. It is natural to estimate γ by $\hat{\gamma} = g(\hat{\theta})$ (in fact, both the moment method (MM) and the maximum likelihood method (ML) recommend us to do so if $\hat{\theta}$ is a MM- or ML- estimator respectively). To measure the uncertainty of this estimation, we need a $1-\alpha$ confidence interval for γ , at least approximately. This we can achieve since it can be proven that, under these conditions,

(1)
$$\sqrt{n}(\hat{\gamma}-\gamma) \xrightarrow{D}_{n\to\infty} Y \sim N(0, b^2[g'(\theta)]^2)$$

a) **Proof of (1):** The proof follows simply from the first order Taylor expansion of $\hat{\gamma} = g(\hat{\theta})$ around θ (see (A3) in appendix 1 in "Lecture notes II to Rice chap. 5" (referred to as LN2).

(2)
$$\hat{\gamma} = g(\hat{\theta}) = g(\theta) + g'(\theta) \cdot (\hat{\theta} - \theta) + R_n$$
, where R_n is an error term.

Now, it can be shown that $\sqrt{n}R_n \xrightarrow[n \to \infty]{P} 0$ [for those interested a proof can be found in the appendix to this exercise]. Use this and Slutzky's lemma to prove (1). [Note: This way of deriving a limit distribution by a first order Taylor expansion, is often referred to in the

[Note: This way of deriving a limit distribution by a first order Taylor expansion, is often referred to in the literature as the so called "delta-method".]

b) An approximate $1-\alpha$ confidence interval for γ : Usually the constant *b* is also unknown. We assume that we have an estimator, \hat{b} , that is consistent for *b*. We then get from (1)

(3)
$$P\left(\hat{\gamma} - z_{\frac{\alpha}{2}} \frac{\sqrt{\hat{b}^2 [g'(\hat{\theta})]^2}}{\sqrt{n}} \le \gamma \le \hat{\gamma} + z_{\frac{\alpha}{2}} \frac{\sqrt{\hat{b}^2 [g'(\hat{\theta})]^2}}{\sqrt{n}}\right) \approx 1 - \alpha \text{ for large } n$$

where $z_{\frac{\alpha}{2}}$ is the upper $\frac{\alpha}{2}$ -point (i.e. the $1-\frac{\alpha}{2}$ percentile) in N(0,1). Justify (3) by using Slutzky's lemma along the lines in example 5 in LN2.

Appendix to exercise 6

Proof that $\sqrt{n}R_n \xrightarrow[n \to \infty]{P} 0$ in (2):

Taylor-expanding $\hat{\gamma} = g(\hat{\theta})$ around θ with one term plus error gives (see (A3) in appendix 1 in LN2)

(4)
$$\hat{\gamma} = g(\hat{\theta}) = g(\theta) + g'(c_n)(\hat{\theta} - \theta)$$

where c_n lies somewhere between θ and $\hat{\theta}$. Write (4) as

$$\hat{\gamma} = g(\hat{\theta}) = g(\theta) + g'(\theta)(\hat{\theta} - \theta) + (g'(c_n) - g'(\theta))(\hat{\theta} - \theta) = g(\theta) + g'(\theta)(\hat{\theta} - \theta) + R_n$$

where $R_n = (g'(c_n) - g'(\theta))(\hat{\theta} - \theta)$. Now $\sqrt{n}R_n = A_nU_n$ where $A_n = g'(c_n) - g'(\theta)$ and $U_n = \sqrt{n}(\hat{\theta} - \theta)$. If we can prove that $A_n \xrightarrow{P} 0$, it follows from Slutzky (since U_n converges in distribution) and properties (3) and (5) in LN2, that $\sqrt{n}R_n \xrightarrow{P} 0$ is true. First observe that $c_n \xrightarrow{P} \theta$. This follows since c_n is between θ and $\hat{\theta}$, which implies that $|c_n - \theta| \le |\hat{\theta} - \theta|$. Then, if $\varepsilon > 0$ is arbitrarily small the following events satisfy $(|c_n - \theta| > \varepsilon) \Rightarrow (|\hat{\theta} - \theta| > \varepsilon)$, from which follows (note that $\hat{\theta}$ is consistent from exercise 5d) that $P(|c_n - \theta| > \varepsilon) \le P(|\hat{\theta} - \theta| > \varepsilon) \xrightarrow{} 0$, and, therefore, $P(|c_n - \theta| > \varepsilon) \xrightarrow{} 0$.

Now, g'(x) is continuous, and therefore $A_n = g'(c_n) - g'(\theta) \xrightarrow[n \to \infty]{p} 0$ (see theorem 1 in LN2). Q.E.D.