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Exercise 1 
a. Suppose that ~ ( , )X α λΓ . Show that ~ ( ,1)Y Xλ α= Γ . 
 
b. Problem 6 in Rice chapter 5. Use the method of example 4 in Lecture Notes II to 
Rice chapter 5. 
 
c. Suppose that ~ ( . Calculate, using STATA, 20, 4)X Γ (P X x)≤ for x = 3, 4, 5, 6, 
7,  and compare with the corresponding approximating normal probabilities. [Hint:  
Make a column in STATA consisting of 3,4,5,6,7, and use the functions gammap and 
norm. Note that gammap only calculates the cdf of ( ,1)αΓ .] 

 

 

Exercise 2 
 
Some people (particularly gamblers) prefer to think in terms of odds in stead of 
probabilities to judge the chance of an event. Let ( )p P A=  be the probability of an 
event, A. The odds for A is defined as  

(1) 
1

p
p

θ =
−

 

and can be interpreted as the expected number of wins for each loss in a series of trials of 
a game. I.e.,  if X is the number of wins in n independent games (trials), then 
E(No. of wins) / E(No. of losses) /( (1 ))np n p θ= − = . 
 
a. One game on a slot machine consists of initially paying a fixed amount, then push 
a button to make some figures spin before they stop in a random pattern. Certain 
predetermined patterns lead to a win, small or big, while the rest of the possible patterns 
lead to loss. Let p denote the probability of a win in a single game for a given slot 
machine (this p may vary between machines and is usually unknown for the player). Let 
X be the number of wins in n games (trials) on this particular slot machine. Based on the 
following data we wish to estimate p andθ . Data:  n = 64 trials gave 8 wins. 
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Let  be 1 or 0 if the i-th trial gives a win or a loss respectively. The probability mass 
function (pmf) for  is  . Find the maximum likelihood 

estimators (mle), 

iX

iX ( ) ( | ) (1x
iP X x f x p p x= = = − )x

ˆˆ ,p θ , for  and p θ , based on , and calculate the estimates. 1 2, , , nX X XK

 
b. In the introductory statistics course an approximately 1 α−  confidence interval 
(CI) for p as  2ˆ ˆ ˆ(1 ) /p z p pα± − n  where 2zα  is the upper 2α -point in N(0, 1). Verify 
that this is the approximately 1 α−  CI obtained from the large sample mle theory. I.e. 

find first the so called Fisher information,  
2
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. Then, use 

theorem B in section 8.5.2 to show that 
ˆ( ) ~ (0,1)
(1 )
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−
. Finally, use the 

fact that p̂  is consistent and Slutzky’s lemma. Calculate the 95% CI for p based on the 
data. 
 
c. There are usually several ways to approximate things, as illustrated by the 
following three ways to construct approximate CI’s for θ : 

Method 1:  Since, from b., we have ˆ( ) (0, (1
D

n
n p p N p p

→∞
− → − )) , we may use the delta-

method from supplementary exercise 6 to develop the asymptotic distribution of 
ˆ(n )θ θ−  and from there set up the CI for θ  using Slutzky. Do this and calculate the CI 

with degree of confidence  95%. 
 
d. Method 2:   Since the transformation, ( ) /(1 )g p p pθ = = − , is an increasing 
function of p, we can determine a CI for θ  directly from the CI of p in b. in the following 
way:  Let L and U be observable r.v.’s such that ( ) 1P L p U α≤ ≤ ≈ − . Then the interval 
(L, U) is an approximate 1 α−  CI for p. Explain why the interval , is an 
approximate 1

( ( ), ( ))g L g U
α−  CI for θ  with exactly the same degree of confidence as ( , . 

Calculate this interval for the given data (degree of confidence 95%). 
)L U

 
e. Method 3 (Parametric Bootstrap):  A weakness with asymptotic methods is that 
they require large samples to apply. Given a finite sample we cannot always be sure that 
an interpretation of data based on asymptotic approximations is justified. Only in 
exceptional cases there exist analytical ways to evaluate the exact statistical properties of 
an estimator based on a finite small sample. Therefore the most common way to obtain 
insight into the small sample properties of estimators is by simulation techniques (of 
which the “Bootstrap” family has gained a lot of importance in the later years). 
 
In the binomial case we have the rule of thumb that the approximation to the normal 
distribution for the binomial variable is considered satisfactory if  and 

. In our case  which indicates that we may be in a border case. It is to 
be expected that the CI’s in c. and d. are reasonably well justified, but we cannot be 
completely sure. To obtain evidence about this issue we arrange a parametric bootstrap 

10np ≥
(1 ) 10n p− ≥ ˆ 8np =
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experiment. Based on a simulated sample of estimates of θ , we can calculate a so called 
bootstrap 95% CI for θ  and compare with the two asymptotic CI’s. If there is no great 
difference this can be taken as evidence that the asymptotic methods worked well. If the 
difference is substantial, it is reasonable to discard the asymptotic CI’s and report the 
bootstrap CI for θ  instead. 
 
Read the text between example C and D in Rice section 8.5.3, in addition to example E. 
Use the method described there to calculate a 95% bootstrap CI for θ  based on a 
bootstrap sample of size B = 1000. You then need to generate 1000 observations of a 
binomial r.v., X,  with n = 64 trials and success probability p̂ . For each of the simulated 
X, calculate the mle estimates of p and θ . Thus you have obtained 1000 simulated 
observations of the mle’s p̂  and θ̂ , that we may call  .  To draw 
binomial observations is not direct in STATA and you need a small program to do that 
which you can find in the appendix. 

, , 1, 2, ,1000i ip iθ∗ ∗ = K

 
f. Make histograms for both the ip∗ ’s and the iθ

∗  in e. Draw the best fitting normal 
density in both histograms. Which of the two distributions seems closest to a normal 
distribution? 
 
 

Appendix to exercise 2 
 
Suppose we want 1000 observations of X ~ bin(64, 0.125). The following small do-file 
(can be written directly into STAT by the do-editor or read into STATA from an ASCII-
file from the do-editor), produces a STATA data file containing the 1000 observations. I 
have called the data file, “bindat”, here but you can choose your own name of course. 
The file is stored under the name, bindat.dta. For calculation of the ip∗ ’s and the iθ

∗ ’s this 
file must be read into STATA by the use-command (e.g.  use bindat ).  
 
capture program drop binsim 
program define binsim 
 tempname sim 
 postfile `sim' x using bindat, replace 
 quietly { 
  local i=1 
  while `i' <= 1000 { 
   drop _all 
   set obs 64 
   gen z=sum(uniform()<=.125) 
   post `sim' (z[_N]) 
   local i=`i'+1 
    } 
   } 
 postclose `sim' 
 clear 
end   
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Notes: The first line makes it possible to edit the program binsim and then run it again 
without STATA protesting. The single quotation mark ` I find on the top of my backslash 
(\) key. The closing single quotation mark, ‘ , I find under * on the *-key.  
 
If z is a variable with numbers 1 2, , , kz z K z , using the function sum(z), creates a new 
column with the cumulative sums, 1 1 2 1 2 3, , ,z z z z z z+ + + K The total sum of the iz ’s is 
found as the last element of this column. Note that  gives the number of observations 
in the current dataset, so 

_ N
[_ ]z N  refers to the total sum. 

 
1. Read the lines into the do-editor. 
2. Run the do-file by pushing the run-key in the do editor (this only reads the 

program binsim into STATA but does not execute it). 
3. Then run the program by writing binsim in the command window. 
4. Then read into STATA the simulated data by the command, use bindat. 
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