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ECON 4130

Supplementary Exercises 5 and 6
(Applications of Slutsky’s lemma)

Exercise 5
a) Let én be an estimator for an unknown parameter 6. Suppose we know that

~ D
ﬁ(en —49) — Z ~N(0,b?) where b>0 isaconstant. Explain why this is the same as

6-0 ° Z

saying that Jn 0 — E~ N(0,1). [ Hint: Use the definition of convergence in

distribution directly, or, alternatively, use Slutsky’s lemma combined with property (3) in
“Lecture Notes to Rice chap. 5”.]

b) Let @ be an unknown parameter in a model and én an estimator based on n

~ D
observations. Suppose we have proved that \/ﬁ(ﬁn —0) - X ~N(0,b*) whereb>0 is

some constant. Show that this implies that én must be a consistent estimator for .

[Hint: Set X, = Jn (én —6), solve with respect to én, and use Slutsky. Also properties
(3) and (5) in “Lecture Notes to Rice chap. 5” may be relevant.]

Exercise 6 (the o-method for determining asymptotic normality of
estimators).

Let & be an unknown parameter in a model and 6 an estimator based on n observations.
Suppose we have proved that ﬁ(é—@) n:DL X ~ N(0, b?) where b is some constant.
Suppose that what we are really interested in is another transformed parameter, » = g(60).
We assume that g(x) is a continuously differentiable function everywhere where € and
6 may take their values. It is natural to estimate y by y = g(é) (in fact, both the moment

method (MM) and the maximum likelihood method (ML) recommend us to do so if 0 is
a MM- or ML- estimator respectively). To measure the uncertainty of this estimation, we



need a 1—a confidence interval for y, at least approximately. This we can achieve by
the following lemma (combined with Slutsky’s lemma):

~ D
Lemma Let +/n(@-6) - X ~N(0,b?), and let g(x) be a continuously

differentiable function everywhere where € and 0 may take their values. Then also

@ V(9@ -9@) > Y~NO.bIgOF)

D -
[With other words: v/n(7 =) = Y ~ N(0, b*[g'(6)]?) where 7 =g(6) and
7=9(0) ]

a) Proof of (1): The proof follows simply from the first order Taylor expansion of
7 =9(0) around & ( see (A3) in appendix 1 in “Lecture Notes to Rice chap. 5” (referred
to as LNS).

2 7=90)=g©)+9'©) (0-0)+ R,, where R, isan error term.

P
Now, it can be shown that +/n R, — 0 [for those interested a proof can be found in the

appendix to this exercise]. Use this and Slutsky’s lemma to prove (1).

[Note: This way of deriving a limit distribution by a first order Taylor expansion, is often referred to in the
literature as the so called “delta-method”.]

b) An approximate 1-« confidence interval for y: Usually the constant b is also

A

unknown. We assume that we have an estimator, b, that is consistent for b. We then get
from (1)

@ pli_g WIOOF _ o b
SN

Sy<y+i, ~ 1-a forlargen

g0
5 An
where z, is the upper %-point (i.e. the 1—% percentile) in N(0,1). Justify (3) by using

2
Slutzky’s lemma along the lines in example 5 in LN5.



C) Suppose X, X,,..., X, ~iid, with common pmf:
f(x;p)=P(X; =x)=p@-p)** for x=1,2,3,....

Put 6 :%: E(X,). Explain why the central limit theorem (CLT) implies that

_ D — _
In(X-6) > Z~N(0, ! j Use this and the lemma in a. to show that p =1/X

n—o p2

(i.e., the mle and mme estimator according to Written paper I1) is approximately normally
distributed in the sense

W(p-p) > Y =N p’(-p)

Approx.

2 —
(which can be interpretedas p ~ N (p, w] for given n. Note also

that the result can be derived by the asymptotic theory of mle — estimators, e.g.,
see “written paper 11”.)

Appendix to exercise 6
P -
Proof thatv/nR, — 0 in (2):

Taylor-expanding y = g(é) around @ with one term plus error gives (see (A3) in
appendix 1 in LN5)

@ 7=90)=9(6)+9'C,)0-0)
where ¢, lies somewhere between & and 6. Write (4) as

7=9(0)=9(0)+9'O)0-0)+(9'(c,)-9'@))O-0)=g(8)+7'(8)(@-0)+R,

where R, =(g'(c,)—¢ (0))(6—0). Now \/ﬁRn =AU, where A =g'(c,)—9'(¢) and
~ P
U, = \/ﬁ(a—e) . If we can prove that A, —0, it follows from Slutsky (since U,

P
converges in distribution) and properties (3) and (5) in LN5, that \/ﬁRn — 0 is true. First

n—oo

P A
observe that ¢, — @. This follows since ¢, is between @ and &, which implies that

nN—oo

lc,— 0| < | 0-0 |. Then, if >0 is arbitrarily small the following events satisfy



(c,—-@|>&)=( -0 |> &), from which follows (note that 6 is consistent from
exercise 5b) thatP(/c,—@|>¢&) < P(] -0 |> &) — 0, and, therefore,

P
P(c,-8|>¢) > 0. Hence ¢, > 6.

n—oo

P
Now, g'(x) is continuous, and therefore A, =g'(c,)—g'(d) — 0 (see theorem 1 in LN5).

Q.E.D.
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