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Exercise A 

(Based on Exam 2010H -postponed.) 

 

 

Problem 1 

 

Introduction.     When counting the number of members in groups such as the number of  

bacteria per colony, the number of people per household, or the number of animals per 

litter, every single count must necessarily be larger or equal to 1. This excludes, e.g., the 

poisson  distribution as a model for such counts. On the other hand the so-called  

logarithmic series distribution  often proves useful:  

 

A discrete random variable (rv), Y, taking values in {1,2,3, }, is said to be logarithmic 

series distributed if the probability mass function (pmf) is 
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where    is a parameter such that 0 1  . 

 

A. Calculate  ( 1)P Y   and ( 2)P Y   when 0.5  . 

 

B. Show that the expected value of Y is 
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[Hint:   You are reminded of the sum of a geometric series 
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   which is valid if  | | 1a    ] 
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C. (i) Show that the moment generating function (mgf) for Y is given by 

 

  ( ) ln(1 )tM t c e   ,  where c is as given in section B. Explain why 

( )M t  is well defined in an open interval around 0. 

   

 [Hint:   You may need the following result (which you do 

not need to prove) from the theory of series: 
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        whenever | | 1a   ] 

 

 

(ii) Find  Var( )Y  as a function of  . 

 

 

 

 

D. The data in table 1
1
 are the result of investigating the number of bacteria in each 

of  675 colonies of a certain type of soil bacteria. For example, the table shows 

that 146 of the colonies consisted of 2 bacteria, and 359 colonies had one 

bacterium only.   

 

Table 1   Frequency table of the size of colonies 

 

Bacteria per colony (j) 1 2 3 4 5 6 7 Sum 

Number of colonies observed 

jf  359 146 57 41 26 17 29 675 

 

To ease the calculations we give:  
7

1

1421j

j

j f


   

Let iY  denote the number of bacteria in colony i. Assume that 1 2, , , nY Y Y  (where 

675)n   are independent and identically distributed (iid) where iY  is logarithmic 

series distributed with unknown parameter  . 

 

 (i) Show that the maximum likelihood estimator (mle) of  , ̂ , satisfies the 

equation 

 

                                                 
1
 Source: C.A.Bliss and R.A.Fisher, “Fitting the Negative Binomial Distribution to Biological Data”, 

Biometrics 9 (1953): 176-200. 
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(2)  
ˆ

ˆ ˆ(1 ) ln(1 )
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,   where  
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  [Hint:  You can skip proving that the solution of (2) actually 

maximizes the log likelihood since the second derivative of the log 

likelihood is slightly complicated here. ] 

 

 (ii) Explain why the moment method estimator (mme) and the mle are the 

same in this case. 

 

 

 

 

E. (i) Introduce the function ( )g t  defined by 

 

   ( )
(1 ) ln(1 )

t
g t

t t

  

   for  0 1t   

 

In figure 1 we have plotted the function, ( )g t , for 0.05 0.9t   

 

 

Figure 1  
 

   



 4 

 

 Use the plot to obtain an approximate (rough) value for the mle of   based on the 

data at hand. 

 

 (ii) We are also interested in the mean colony size in the population, i.e., 

( )E Y . Explain why the maximum likelihood estimator for ( )E Y , based on the 

proposed model,  is simply ˆ( )E Y Y .  Present your estimate, based on the data in 

table 1,  of the mean number of bacteria per colony for this population. 

 

 

 

 

 

 

 

Problem 2 

There is a complication with the data in table 1 in Problem 1. At the time when the data 

were collected (before 1953) it turned out difficult to count colonies with more than 6 

bacteria. Hence all the 29 colonies registered as having 7 bacteria in table 1 should, more 

correctly, be registered as having 7 or more bacteria. The correct heading in the table 

should have been 7  instead of only 7. In this problem we will try to accommodate this 

complication. 

 

A.  The complication described above implies that the observed values of Y and the 

mle, ̂ , found in Problem 1 are not entirely correct.  Are the true values of Y and 

̂  larger or smaller than the values found in Problem 1 when replacing the count 

7 by 7 ? Give a reason for your answer. 

  [Hint: You can take for granted that the function ( )g t  is strictly 

increasing for 0 1t  . Confer also figure 1 in Problem 1. ]  

 

 

 

B. Introduction.  As a result of  replacing the count 7 by 7 the true value of Y

cannot be calculated. But we can still estimate ( )E Y  credibly if our chosen model 

for the distribution of Y is realistic. A possible test of the realism of our model is 

the well known Pearson 2 - test. The 0H  hypothesis states that the model in 

Problem 1 is true (i.e., 1 2, , , nY Y Y  (where 675)n   are iid where iY  is 

logarithmic series distributed with unknown parameter  ).  Under 0H  the 

frequencies in table 1 are then multinomially distributed with 7 categories,  

{1},{2}, ,{6},{ 7}  and respective probabilities, ( )  for 1,2, ,7jp j  , where 
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1 2 6

1
( ) for 1,2, ,6

( ) ln(1 )

( 7) 1 ( ) ( ) ( ) for  7          

j
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 Based on this specification we can determine a corrected mle, the observed value 

of which turns out to be ˆ 0.7569obs   (you do not need to prove this).  

 

(Note that the index obs stands for the observed value of the random variable in 

focus.) 

 

 Question.    Perform the 2 -test and formulate a conclusion based on 10% level 

of significance. Some of the calculations necessary have been done in table 2. 

Complete the table by filling in the cells with question mark. 

 

 

 

Table 2 Partial table of quantities underlying the Pearson 2 -test based on the 

corrected mle ˆ 0.7569obs 
2
 

 

Category  
j 

Observed 
frequency 

( jO ) 

Mle under 

0H  

( ˆ( )jp  ) 

Estimated 
frequency 

under 0H  

( jE ) 

2( )j j

j

O E

E


 

1 359 0.535 361.23 0.01 

2 146 0.203 136.71 0.63 

3 57 0.102 68.99 2.08 

4 41 0.058 39.17 0.09 

5 26 0.035 23.72 0.22 

6 17 ? ? ? 

7 29 ? ? ? 

     Sum 675 1 675 ? 

 

 

 

 

 

 

 

                                                 
2
  The index obs stands for the observed value of the random variable in focus. 
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C. (i) Explain why the likelihood function for   used in Problem 1 cannot be 

used for the corrected data where category 7 is replaced by 7 . 

 (ii) Assuming 
0H  in section B to be true, set up an expression for the log 

likelihood function for   based on derived multinomial model in section B.  

 

 

 

 

 

D. (i)   Maximizing the log likelihood based on the given data, which requires 

iterations, gives the maximum likelihood estimate, ˆ 0.7569obs   (which you 

don’t have to show here). Use this to compute a corrected estimate of the mean 

population colony size, ( )E Y  from Problem 1. Compare with the corresponding 

estimate in Problem 1. 

 

 (ii)   It turns out (you don’t need to show this) that the Fisher information for one 

observation (trial) (out of 675n  trials ) in this (multinomial)  model is 

 
2

7

1

( )
( )

( )

j

j j

p
I

p







 , where ( )jp   is the derivative with respect to   of  ( )jp  . 

 It turns out that the estimated value of  ( )I   is  

 

   ˆ( ) (0.7569) 6.6076obsI I    

 

 Use this information to calculate an approximate 95% confidence interval (CI) for 

  and justify the interval from general maximum likelihood theory and Slutsky’s 

lemma. 

 

(iii)   Determine approximate 95% confidence limits for the population mean 

( )E Y  based on figure 1 in Problem 1. 
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Exercise B      

Problem 2 from postponed exam 2005H 

 

 

a. Let  Z  be chi-square distributed with r degrees of freedom (written in short   
2~ ( )Z r ). According to the textbook, this is the same as the gamma distribution 

with parameters 2r   and  1 2    ( in short  
1

~ ,
2 2

r
Z

 
 
 

).  Use this and 

known properties of the gamma distribution to show that 

 

 (i) E( ) , Var( ) 2Z r Z r   

 

 (ii)    For r = 2, find the median of Z. Is the median smaller or larger than E(Z)? 

 

 

 

b. According to the textbook, if  X is standard normally distributed ( ~ (0,1)X N ), 

then  2 2~ (1)X  .   

(i) Use this and known properties of the gamma distribution to show that, if 

1 2, , , nX X X  are iid with ~ (0,1)iX N , then  2 2

1

~ ( )
n

i

i

Z X n


 . (Note that iid 

means “independent and identically distributed”.)   

(ii)   Use for example the central limit theorem to justify that 2

1

n

i

i

Z X


  is 

approximately ( , 2 )N n n  distributed for large n. 

 

 

 

c. Let nq  denote the 95% quantile (i.e., such that ( ) 0.95nP Z q  ) in the 2 ( )n  

distribution. Exact values for nq  can be found in the 2 - table in Rice. Let nq  

denote the approximate 95% quantile determined by the approximate distribution 

for Z derived in section b. (i.e., ( , 2 )N n n ). Show that  

 

  2 1,64nq n n     

 

 Calculate the approximation error n nq q   for  30, 60,120n  , and comment on the 

result. 
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d. The approximate quantile in section c. can be improved somewhat. Let  

1 2, , , nX X X  ~  N(0, 1)  as in section b., and put 

 

 2

1

1 n

i

i

Z X
n 

   

 

 Then, by the central limit theorem combined with some other theory, it can be 

proven  that  2 1 (0,1)Dn Z N   as n  (you do not need to justify 

this here). Show that, based on the approximate normal distribution for Z , we 

can derive an alternative approximation, nq ,  to nq  (i.e., the 95% quantile of 

Z n Z ), given by 

 

   
21

1.64 2
2

nq n   .               Compare nq  with nq .for n = 30, 60, 120. 

 

 [Note that this approximation is similar but slightly different from the suggestion 

given in the 2 -table in Rice, which represents a third approximation.] 

 

 

Exercise C 

 

(A slightly altered version of Problem 1 from Exam 2005H –postponed.) 
 

a. Let X and Y be two continuous random variables, both varying in the interval   [0, 

1]. The joint cumulative probability function (cdf) of X and Y is given by 

 

( , ) [1 (0.8)(1 )(1 )]F x y xy x y          for  0 1x    and  0 1y   

 

 Show that the joint density function for X and Y is given by 

 

( , ) 1 (0.8)(1 2 )(1 2 )f x y x y          for  0 1x    og  0 1y  . 

 

 

 

b. Show that both  X and Y  marginally are uniformly distributed over [0, 1]. Find the 

expectation and variance for X and Y.  Are X and Y stochastically independent?  

Calculate  ( 0.5)P Y   and  ( 0.5 | 0.5)P Y X  . 

 

 

 

c. Sketch the conditional density for Y, ( | )f y x , in a graph when x = 1/2, and    
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x = 1 respectively (i.e. altogether two graphs).  

 

 Calculate the regression function, E( | )Y x , and sketch a graph of this. 

 

  

 

d. Find E( )XY by the “double expectation” theorem, i.e.,  

 

E( ) E[E( | )] E[ E( | )]XY XY X X Y X   etc. 

 

Calculate the correlation coefficient between X and Y. 

 


