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Econ 4130 

HG  Oct. 2015 
 

Lecture note –    Introduction to prediction and something 
about the iid model 
 

First about prediction. The iid model will be discussed in example 4 and the appendix below. 

 

When we want to estimate the future outcome (observation) of a random variable, X, we use 

the term prediction instead of “estimation”. In contrast, the term estimation is reserved for the 

task of estimating a fixed unknown quantity (parameter) in a population. In the special case 

when X represents a future value in a time series, we usually instead use the term,  forecasting 

(Norwegian: prognose), for prediction. 

 

1 Case 1 – Prediction of X when the distribution of X is known 
 

Suppose that ~ ( )X f x  (pmf or pdf) where f is known. We want to predict (guess) the 

outcome, obsX , of a future observation of X – an outcome that is not yet known. Let c denote 

our prediction (guess).  

 

What is the best way to choose c?  

 

The answer to this question does not have a universally valid solution, but will depend on the 

criterion of “best” that we use. Such a criterion is usually formulated in terms of the average 

value of a suitable loss function. The following three criteria (especially crit.1) are among the 

most common: 

 

Criterion 1     Loss function  =  
2 2

1( ) ( ) (prediction error)L c X c   .  

 Choose c to minimize expected loss = 2( )E X c    (also called “the mean 

squared error” or MSE): 

 Answer:  Best prediction is the expectation, ( )c E X  . 

 

Criterion 2 Loss function  =  2( ) | | | prediction error|L c X c   . 

 Choose c to minimize expected loss = | |E X c . 

 Answer:  Best prediction is median( )c m X  . 

 

Criterion 3 (Mostly used for discrete distributions). 

 Loss function,  3

0 if 
( )

1 if 

obs

obs

c X
L c

c X


 


 

 Choose c to minimize expected loss = 

3( ( )) 0 ( ) 1 ( ) 1 ( )E L c P X c P X c P X c          

 Answer:  Best prediction is c = the most likely observation  =  

the c that makes ( )P X c largest  

(also called the mode in the distribution of X). 
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Example of criterion 3:       Suppose the pmf of X is given by 

 

x 1 2 3 

( )f x  0.5 0.3 0.2 

 

The best guess (prediction) of X, according to crit.3, is 1c  . This way to predict is probably 

the common way applied intuitively by most people (being risk averters…).  

 

 

Proof of criterion 1.  We have (using that c  is a constant): 

(1) 

  2 2

1

2 2 2 2

2

( ) ( ) ( )

( ) 2( ) ( ) ( ) ( ) ( )

var( ) ( )

MSE E L c E X c E X c

E X c E X c E X c

X c

 

     



             

                 

  

 

 

 which shows that minimum MSE is obtained by choosing c  .    (End of proof). 

 

 

Proof of criterion 2.  The proof in the discrete case is a little tricky - so we skip that 

and assume that X is a continuous rv with pdf, ( )f x  and cdf ( )F x . Then 

 

 

 

 

2 ( ) | | ( ) | | ( ) | | ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2 ( ) 1 ( )

c

c

c c c

c c c

c

c

c

E L c E X c x c f x dx x c f x dx x c f x dx

c x f x dx x c f x dx c f x dx c f x dx xf x dx xf x dx

cP X c cP X c xf x dx xf x dx

c F c xf x dx x

 

 

  

  







        

        

      

   

  

     

 

 ( )
c

f x dx





 

  

 Using that  ( ) ( )

c
d

xf x dx cf c
dc



   and   ( ) ( )
c

d
xf x dx cf c

dc



  , we get 

 

  2 ( ) fill in 2 ( ) 1
d

E L c F c
dc

    

 

 showing that minimum is obtained for 2 ( ) 1 0F c   , or  median( )c X    

  

(End of proof) 
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Example 2  Consider the simple case of X being the result of throwing a fair die, 

with pmf,  ( ) ( ) 1 6f x P X x    for  1,2, ,6x  .  An easy calculation gives us 

( ) 3.5E X    which, according to crit.1 should be the best prediction of 
obsX . This 

is, of course, nonsense since 3.5 is not possible as an outcome. This, however, does not 

mean that criterion 1 itself is nonsense. Note that crit. 1 just says to minimize 
6

2 2

1

1
( ) ( )

6x

E X c x c


         when c is one of the permitted values, 1,2, ,6 . 

Similarly, crit.2 says to choose c among 1,2, ,6 , so that 
6

1

1
| |

6x

E X c x c


     

becomes as small as possible. Using, e.g., Excel we get the table 

 

  

c 1 2 3 4 5 6 
2( )E X c    9.2 5.2 3.2 3.2 5.2 9.2 

E X c  2.5 1.8 1.5 1.5 1.8 2.5 

 3( )E L c  5/6 5/6 5/6 5/6 5/6 5/6 

 

 Hence,  both crit.1 and crit.2 lead to two equally good solutions for the best prediction, 

i.e.,  3 or 4c c  .  Crit.3 says that any of 1,2, ,6  will do as best prediction. 

 

 In the continuous case, if, e.g.,  ~ (169, 36)X N , then both crit.1 and 2 would lead to 

169 as the best prediction of a future obsX . Remember that the expectation and the 

median are equal in symmetric distributions. 

 

 If ~ exp( 0.5)X   , we have that 
1

( ) 2E X


   and  
ln 2

median( ) 1.39X


  , so that 

crit.1 would lead to 2 and crit.2 to 1.39 as the best prediction respectively of a future 

obsX . 

 

Example 3 

 Suppose ( , )X Y  is a pair of rv’s with joint pdf, ( , )f x y , which is known. We want to 

predict Y for a given chosen value of X, i.e., for X x . The relevant distribution for Y 

to use for the prediction is then clearly the conditional distribution of Y given X x , 

with pdf, 1( | ) ( , ) / ( )f y x f x y f x . The best prediction is then, according to criterion 1, 

given by the expectation in this distribution, i.e., ( | )E Y x .  For example, using the 

distribution in Rice defined on page 75,  

 

  

212
( ) for 0 1 0 1

( , ) ~ ( , ) 7

0 otherwise

x xy x y
X Y f x y


    

 



 

 

 Suppose we want to predict Y when X has the value, 0.75X  . In the lecture (10 

september) we derived the conditional pdf ( valid for 0 1x  ): 
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  ( | )   for  0 1
0.5

x y
f y x y

x


  


 

 

 and the expectation,  
2 3

( ) ( | )
2 1

x
x E Y x

x



 


. Hence, the best (following crit.1) 

prediction of Y is 
0.75 2 3

(0.75) ( | 0.75) 0.567
1.5 1

E Y


  


. 

 

 

2 Case 2 – Prediction of X when the distribution of X is unknown 
 

We want to predict X when the distribution with pdf ( )f x  and ( )E X  are unknown. We 

will use the most common criterion 1 for choosing our predictor. The task is, thus, to find the 

best prediction, X̂ , of X based on, 

 

Criterion 1   Choose X̂  to minimize  2ˆ( )MSE E X X  
 

. 

 

If  were known, we would use X̂  , of course.    being unknown, the natural thing to do 

is to estimate   as good as we can from available data and use the estimate, ˆ
obs , as our 

prediction. It turns out that this intuitive procedure is the correct one based on crit.1, as the 

following theoretical argument shows: 

 

 Elaboration.   Suppose that the available data are observations of 1 2, , , nX X X , which 

we denote as the vector 1 2( , , , )nD X X X . For simplicity we assume that the future X 

to be predicted is independent of D, implying that the conditional pdf, 

1 2( | , , , ) ( | ) ( )nf x x x x f x d f x   does not depend on d.
1
 This implies further that 

( | ) ( )E X d E X   .  

 Now, our task becomes to construct our predictor ˆ ( )X h D  as a function of D in the 

best way, i.e.,  such that 2 2ˆ( ) ( ( ))MSE E X X E X h D        
 is minimized.  

 

Applying the theorem of total expectation on the MSE, we get 

 

  2 2( ( )) ( ( )) | ( )MSE E X h D E E X h D D Eg D            

 

 where ( )g d  is the function,  

 

 2 2( ) ( ( )) | ( ( )) |g d E X h D D d E X h d D d             

                                                 
1
 This assumption is typically reasonable for cross section data where D often consists of iid variables. For time 

series data, however, where 
i

X represents the value of the series at time point i, and X the value of the series at a 

future time point, there will often be dependence between X and D. The conclusion of the argument, however, 

will still be the same, i.e., the best prediction of X will simply be the best estimate of ( | )E X d . 
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 noting that  ( )h d  is just a constant in the conditional distribution given .D d  Now we 

can do the same thing as in the proof of crit.1 on page 2, adding and subtracting the 

expected value, ( | )E X d , inside 2( ( ))X h d , and we get 

 

  
22( ) ( ( | )) | ( | ) ( )g d E X E X d D d E X d h d        

 

 As we saw above, ( | ) ( )E X d E X   , giving 

 

  
22( ) ( ) | ( )g d E X D d h d         

 

 But, also 2( )X   is independent of D, so we can drop the conditioning in the first term 

in ( )g d , giving 

 

 2 2 2 2( ) ( ) ( ( )) ( ( ))g d E X h d h d             , where  2 var( )X  . 

  

 Now it only remains to replace d by the rv D in ( )g d and take expectation to find 

 

 2 2 2 2( ) ( ( )) ( ( ))MSE Eg D E h D E h D                .   

 

 From this result we can conclude 

 

Conclusion 

 The best predictor, ˆ ( )X h D , according to crit.1 is a function of the data (D) that 

minimizes 2( ( ))E h D   , or, in other words, ( )h D  is the best estimator, ˆ ( )h D  , 

of  , minimizing 2ˆ( )E     . 

 

This ends the theoretical elaboration confirming the intuition we started with, namely that the 

problem of predicting X reduces to the problem of estimating ( )E X  . 

 

This also tells us how to predict (using crit.1) a response variable Y based on a given value,

X x , of an explanatory variable, X : 

 If ( | )E Y x  is known, the best prediction of Y is given by ( | )E Y x . 

 If ( | )E Y x  is unknown, the best prediction of Y is given by the best possible estimate, 

ˆ( | )E Y x , of ( | )E Y x . 

 

For example, if ( | )E Y x x   , the best prediction of Y, given X x , is ˆˆ ˆY x   , 

where ˆˆ,   are good estimators, for example OLS in the case of homoscedasticity. This is the 

reason that Stata (and other packages) usually call the expression ˆˆ x   for “predicted Y”. 

 

Note that, even if the prediction problem gives the same answer (estimate) as an estimation 

problem, it is wrong to look at the two problems as the same. The difference between 
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prediction and estimation does not appear in the estimates, but rather in the uncertainty. The 

uncertainty of a prediction (measured by a so called “prediction interval”) is larger than the 

uncertainty of the corresponding estimation (as measured by a confidence interval). This will 

be illustrated in the following example 4 with data. 

 

Example 4 
We will use the mother/daughter data collected from Stat 1 lectures (Econ2130) in the period 

2010-2012. (The data, consisting of 125n   observations, can be downloaded as an Excel-file 

from   http://folk.uio.no/haraldg/  under the heading Econ2130.) In addition to prediction we 

will also use the example as an opportunity to discuss the important iid model often used for 

cross section data. 

 

Let X denote the height of the mother and Y the height of the daughter for a randomly chosen 

pair from the population. This we express by saying, ( , ) ~ ( , )X Y f x y  where the pdf ( , )f x y  

represents the population distribution. 

  

The problem is to predict the height of the daughter (Y) for a particular pair where the mother 

has height, 0 160X x  . (It could, for example, be a case where the mother has only one 

child, a daughter who is just a small child, and we want to predict how tall the daughter will 

be when she grows up.)   

 

We will use criterion 1 as our guide line for “best prediction”. 

 

The first model assumption is that we have a representative sample from the population. More 

precisely:   

 

(1) The data are observations of an iid sample of random pairs, 

1 1 2 2( , ), ( , ), , ( , ),n nX Y X Y X Y   where ( , ) ~ ( , ) for 1,2, ,i i i iX Y f x y i n . 

 

Note that this implicitely implies representativity in the sense that the sample would have 

been non-representative if, e.g., the common distribution of ( , )i iX Y 1,2, ,i n , were 

different from the population distribution  f. 

 

There are strong reasons to postulate that the regression function for Y with respect to X (i.e., 

( ) ( | )x E Y x  ) is a linear function of  x in this situation. (For example, assuming that ( , )X Y  

is bivariate normally distributed, which is an empirically well founded assumption for 

homogeneous height data, the linearity of the regression function is automatically fulfilled – 

even the assumption of homoscedasticity.)  So we assume 

 

(2) Regression function:  ( ) ( | )x E Y x x     , where ,   are unknown constants. 

(3) Homoscedasticity:     2 2( ) var( | )x Y x    - constant. 

 

If ,   were known, we would use 0 0( ) (160) 160x x            as our best 

prediction. Since they are unknown, however, we will need to estimate them in order to obtain 

a prediction. 

 

http://folk.uio.no/haraldg/
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 For the sample, from assumptions (1), (2), (3), it follows that for 1,2, ,i n , 

( | ) ( )i i i iE Y x x x      and  
2var( | )i iY x  .  

 Notice here that ix  represents the observed value of the rv iX  and, as such, a fixed 

number.  

 Introducing error terms, i i ie Y x    , we can write this equivalently as 

i i iY x e     for 1,2, ,i n , where ( | ) 0i iE e x   and 

2var( | ) var( | ) var( | )i i i i i i ie x Y x x Y x        (using that 
ix   is a constant in 

the conditional distribution given i iX x ).  

 Hence it appears that we can use the simple regression model presented in Stat 1 

(Econ2130) where the values, 1 2, , , nx x x , of the explanatory variable are assumed to 

be fixed numbers.  

 

That this is allowed will be justified theoretically in the appendix 1 below. The fixation of the 

explanatory variable to the observed values is a highly convenient measure, simplifying the 

estimation problem considerably, and is used a lot in econometrics when dealing with 

exogenous explanatory variables. But, of course, it needs a theoretical justification… 

 

Thus our model for the data is the same as in the Stat 1 course: 

 

(4) i i iY x e     for 1,2, ,i n  

 

where the error terms 1 2, , , ne e e  are iid rv’s with 
2~ (0, )ie N  , and where 1 2, , , nx x x  are 

fixed numbers.  

 

Note that the normality of ie  follows automatically if ( , )i iX Y  is bivariate normally 

distributed (a reasonable assumption here) which implies that the conditional distributions are 

normal as well. So   2( | ) ~ ( | ), var( | ) (0, )i i i i i ie x N E e x e x N  . 

 

Note also that ie  is a non observable variable (also called a latent variable) since it depends 

on the unknown ,  . However, it can be estimated (i.e., predicted) by the predictor (called 

residual), ˆˆ
î i ie Y x     for 1,2, ,i n . In general, residuals contain important 

information when judging the realism of some model and is therefore often used as a 

diagnostic tool for this purpose. 

 

Introducing the population parameters, 
2 2( ), ( ), var( ), var( ), cov( , )X Y X Y XYE X E Y X Y X Y         , 

these can be estimated by the sample analogues 

2 2 2 2 2

1 1 1

1 1 1
, , ( ) , ( ) , ( )( )

1 1 1

n n n

x i y i xy i i

i i i

X Y S X X S Y Y S X X Y Y
n n n  

      
  
    

respectively. (It can be proven that if ( , )X Y  is bivariate normal these will be equal to the 

maximum likelihood estimators except that 1 ( 1)n  in the variance/covariance formulae’s is 

replaced by 1 n .) 
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Introducing  the correlation between X and Y, ( )XY X Y    , this can be estimated by the 

sample analogue, ( )xy x yr S S S   (which will, actually, be equal to the mle estimator in 

bivariate normal case). 

Using model (4) we can replace all iX  by the observed values, ix , and consider x  and 

2 2

1

1
( )

1

n

x i

i

s x x
n 

 

 as constants and 2

1

1
( )( )

1

n

xy i i

i

S x x Y Y
n 

  

 . The OLS estimators are 

then given by  
2

ˆ ˆ ˆˆ ˆˆ, , ( )
xy

x

S
Y x x x

s
          , and the regression variance, 

2 2 2var( | ) (1 )YY x     , is estimated by  2 2 2 2 2

1

1 1 ˆˆ ˆ
2 2

n

i y x

i

n
e S s

n n
 




  

 
  

(see, e.g., the Stat 1 course for formulae’s). Estimates are given in the table 

 

Table of estimates.  (Sample size, 125n  ) 

 

Parameter Estimate Value 

X  x  166.9 

Y  y  167.6 

X  2

x xs s  5.8232 

Y  2

y ys s  5.5938 

XY  xys  11.7315 

  2ˆ
xy xs s   0.346 

  ˆˆ y x    109.96 

(160)  ˆˆ 160    165.3 

 

According to this, our prediction of the daughter’s height when she grows up is 165.3. 

 

Note that the estimate, ˆ(160) 165.3obs   now has two interpretations 

 It is the (OLS) prediction of a single case of daughter’s height when the mother is 160 

cm. 

 It is the (OLS) estimate of the mean in the population of daughter’s heights with 

mothers all being 160 cm. 

 

 Evaluation of uncertainty (in terms confidence/prediction intervals). 
 

95% confidence interval (CI) for 0( ) (160)x   (review from the basic course, 

Econ2130): 

According to results given in the Stat 1 course, 
exactly

0 0
1 2

0

ˆ( ) ( )
~

ˆSE( (x ))
n

x x
T t

 





  distributed (i.e., t-

distribution with n-2 degrees of freedom). When n is so large as 125, the  123t -distribution is 

practically almost identical with the N(0,1) distribution, so we may as well state 1 ~ (0,1)T N . 
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0 0
ˆˆˆ( )x x     is unbiased and with variance 

 

(5) 
2

2 0
0 2

( )1
ˆvar( ( ))

( 1) x

x x
x

n n s
 

 
  

 
 

 

The formulae for the (estimated) standard error is 

 

(6) 
2

0
0 2

( )1
ˆ ˆSE( ( ))

( 1) x

x x
x

n n s
 


 


 

 

where   2 2 2 2 2

1

1 1 ˆˆ ˆ
2 2

n

i y x

i

n
e S s

n n
 




  

 
 .  Using 1 ~ (0,1)T N , we get 

 

 

0 0
1

0

0 0 0 0 0

ˆ ( ) ( )
0.95 ( 1.96 1.96) 1.96 1.96

ˆSE( (x ))

ˆ ˆ ˆ ˆ( ) 1.96 SE( (x )) ( ) ( ) 1.96 SE( (x ))

x x
P T P

P x x x

 



    

 
         

 

      

 

 

Using 0 160x  , the estimates become  
2 2ˆ (5.2396)obs   and 

2

2

1 (160 )
ˆ ˆ ˆSE( (160)) | (0.139) 0.728

( 1)
obs obs obs

x

x

n n s
  


    


, giving 

 

A 95% CI for  (160) : 

(7)    ˆ ˆ(160) 1.96 SE( (160)) 165.3 1.96 0.728 163.9, 166.7
obs

        

 

 

A 95% prediction interval (PI) for | 160Y X  : 

Instead of the standard error of 0
ˆ( )x , we now use the square root of mean squared error 

(MSE) of the predictor 0
ˆ ˆ( )Y x : 

 
2 2

0 0 0 0 0 0

2 2

0 0 0 0 0 0

2 2
2 2 20 0

2 2

ˆ ˆ( ( )) | ( ( ) ( ) ( )) |

ˆ ˆ( ( )) | ( ( ) ( )) var( | ) var( ( ))

( ) ( )1 1
1

( 1) ( 1)x x

MSE E Y x X x E Y x x x X x

E Y x x E x x Y x x

x x x x

n n s n n s

   

   

  

               

            

    
        

    

 

 

Notice that we have gotten an addition to the variance of 0
ˆ( )x  that does not get smaller 

when n increases. 

 

Let us call the estimated version of the square root of MSE for ˆSE( )Y . Then 
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2

0

2

( )1ˆ ˆSE( ) 1
( 1) x

x x
Y

n n s



  


 with observed value, ˆSE( ) 5.287obsY   

 

Now, in the normal case (Y being normally distributed), it can be proven
2
 that 

 
exactly

0
2 2

ˆ( )
~

ˆSE( )
n

Y x
T t

Y





  - which we here can identify with the (0,1)N  distribution. Hence, the 

same calculation as above gives us 

 

0
2

0 0

ˆ ( )
0.95 ( 1.96 1.96) 1.96 1.96

ˆSE( )

ˆ ˆˆ ˆ( ) 1.96 SE( ) ( ) 1.96 SE( )

Y x
P T P

Y

P x Y Y x Y



 

 
         

 

       
 

 

 

So the 95% “prediction interval” (PI) for Y becomes, 0
ˆˆ( ) 1.96 SE( )x Y   . The observed 

value of the PI for 0 160x   is 

 

   ˆˆ(160) 1.96 SE( ) 165.3 1.96 5.287 154.9, 175.7
obs

Y      
 

 

 

which is considerably larger than the corresponding CI for (160) . 

 

 

 

Appendix 1 Theoretical justification that the observed values of the explanatory 
variable can be considered as fixed numbers in the regression model 

 

The starting point is the iid model in (1) repeated here 

 

(8) The data are observations of an iid sample of random pairs, 

1 1 2 2( , ), ( , ), , ( , ),n nX Y X Y X Y   where ( , ) ~ ( , ) for 1,2, ,i i i iX Y f x y i n . 

 

where f represents the population distribution for ( , )X Y . This implies that the joint pdf of all 

the variables (denoted by f ) can be written
3
 

                                                 
2
 Technical details (optional reading) about the construction of t-distributed rv’s (as well as F-distributed rv’s) 

can be found in Rice chapter 6. 
3
 The factorization actually uses a slightly more general concept of independence than given in the lecture. 

Namely that one group of rv’s is independent of another group of rv’s if the joint pdf of all variables is the 

product of the two marginal joint pdf’s for the two groups. For example, 
1 1 2 2

( , ) and ( , )X Y X Y  are independent 

pairs if the joint pdf can be factorized, 
1 1 2 2 1 1 1 2 2 2

( , , , ) ( , ) ( , )f x y x y f x y f x y , where 
1 2
,f f  are the marginal joint 

pdf’s of the two pairs respectively obtained by integrating out the other variables from f . this implies (in the 

same way as in the lecture) that any event formulated in terms of the first pair ( e.g., 
1 1

X Y ) is independent of 

any event formulated in terms of the second pair (e.g., 
2 2

3X Y  ). It also implies that 
1 2
,X X  are independent 

as well as 
1 2
,Y Y . 
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(9) 1 1 2 2 1 1 2 2( , , , , , , ) ( , ) ( , ) ( , )n n n nf x y x y x y f x y f x y f x y  

 

 

 

 

We can also factorize f  using the conditional distribution of the iY ’s given all the i iX x  

 

(10) 1 1 2 2 1 2 1 2 1 1 2( , , , , , , ) ( , , , | , , , ) ( , , , )n n n n nf x y x y x y f y y y x x x f x x x   

 

where 
1f  is the marginal joint pdf of all the iX ’s obtained by integrating out all the 

iy ’s from 

f . If all the arguments, ,i ix y ’s are equal to the observed values of ,i iX Y , (10) gives the 

likelihood function of our data with log likelihood 

 

(11) 1 2 1 2 1 1 2( ) ln ln ( , , , | , , , ) ln ( , , , )n n nl f f y y y x x x f x x x     

 

where 
2

4( , , , , , )r       is the vector of all the parameters in the model. We notice that, 

from the model formulation (4), that all the three parameters of interest, 2, ,   , occur in the 

first term only in (11) and not in the second term, so that, when we develop the mle estimators 

for these parameters by derivation, the derivative of the second term ( 1ln f ) will always be 

zero. In other words, the maximization of the full likelihood function with respect to the three 

parameters of interest, 2, ,   , is equivalent to maximizing the conditional likelihood, 

1 2 1 2( , , , | , , , )n nf y y y x x x  with respect to 2, ,   . Hence we can consider the 

observations, 1 2, , , nx x x , as given fixed numbers when estimating 2, ,   .  

 

This argument, referring to the maximum likelihood principle for estimating the parameters of 

interest, is a common argument used in the econometric literature for justifying considering 

the observed values, ix ’s, as given fixed numbers in the model.  

 

It may also be mentioned that the fact that the parameters of interest do not occur in the 

marginal pdf 1f  sometimes is used as one (of several possible) statistical definitions of X 

being “exogenous”.  

 

In this situation we may simplify the conditional joint  f  further. First notice that the model 

(8) implies that 1 2, , , nX X X  are iid rv’s with pdf 

 

(12) 1 1 2 2 1 2 2 2( , , , ) ( ) ( ) ( )n nf x x x f x f x f x  

 

where 2 ( )if x  is the (common) marginal pdf of iX  for 1,2, ,i n . Using (9)-(11) we get 
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(13) 

1 1 2 2
1 2 1 2

1 1 2

1 1 2 2
1 1 2 2

2 1 2 2 2

( , , , , , , )
( , , , | , , , )

( , , , )

( , ) ( , ) ( , )
( | ) ( | ) ( | )

( ) ( ) ( )

n n
n n

n

n n
n n

n

f x y x y x y
f y y y x x x

f x x x

f x y f x y f x y
f y x f y x f y x

f x f x f x

 

 

 

 

showing that, given all  for 1,2, ,i iX x i n  , then 1 2, , , nY Y Y  are independent but with 

different pdf’s 

 

 1 2| , , , ~ ( | )i n i iY x x x f y x  

 

or 

 1 2( | , , , ) ( | )i n i if y x x x f y x  

 

which exactly represents the model given in (4) and shows that we can drop all jx ’s except ix  

from the distribution of iY  - which is actually due to the independence of 1 2, , , nX X X . 

 

From this we may draw even further important conclusions. If   is one of the three 

parameters, , , and ( )x x      , the theory for the model gives that the OLS estimators 

satisfy 

 

 1 2 2

ˆ
, , , ~

ˆSE( )
n nT x x x t

 





  

 

which we use for inference about  . Since the 2nt   distribution does not depend on 

1 2, , , nx x x , we can conclude that T is even marginally (without the conditioning) 2nt   

distributed
4
 !  So confidence intervals and tests about  , developed under the fixed values 

assumption for 1 2, , , nX X X , are  still valid without the conditioning. 

 

However, the distribution of ̂  itself may depend on the conditioning. For example, from the 

theory of model (4), the OLS estimator ̂  satisfies (writing x  for  1 2, , , nx x x ), 

 

(14)  
2

2
ˆ ˆ| ~ , var( | ) ,

( 1) x

x N x N
n s


   

 
  

 
 

 

implying that the marginal distribution of ̂  no longer is normal. On the other hand, (14) 

implies that 

 

 ˆ( | )E x   (i.e., a constant function of x ) 

                                                 
4
 Remember from the lectures that if ( , ) ~ ( , )U V f u v , and the conditional pdf, ( | )f v u  does not depend on u, 

then U and V must be independent and 
2

( | ) ( )f v u f v , i.e., the marginal pdf of V. This is true (why?) even if U 

consists of several variables. 
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so the theorem of total expectation gives 

 

 ˆ ˆ( ) ( | ) ( )E E E X E      
 

   

 

̂  is therefore still unbiased!   However, the variance becomes complicated 

 

  
2 2

2 2

1ˆ ˆ ˆvar( ) var( | ) var ( | ) var
( 1) ( 1)x x

E X E X E E
n S n S

 
   

   
                  

 

 

which is complicated. In practice, however, we may look at the expression, 
2

2

1

( 1) xn S





, as an 

(unbiased) estimator of ˆvar( ) . 

 

 

 

Appendix 2  Some comments about exogenous variables in iid models 
 

The econometrical consequence of a variable being exogenous is that we can consider this 

variable as having fixed values (e.g., equal to the observed values) in an econometric model – 

which often simplifies the estimation problem considerably. 

 

The common reason presented for this is the factorization (10): 

 

(15) 1 1 2 2 1 2 1 2 1 1 2( , , , , , , ) ( , , , | , , , ) ( , , , )n n n n nf x y x y x y f y y y x x x f x x x   

 

or, in terms of log likelihood, 

 

(16) 1 2 1 2 1 1 2( ) ln ln ( , , , | , , , ) ln ( , , , )n n nl f f y y y x x x f x x x     

 

combined with the maximum likelihood principle that, (in a certain sense and under some 

general conditions), utilizes all available information in the data for estimation. 

 

When the parameters of interest ( , ,    here) only occur in the first term  

( 1 2 1 2ln ( , , , | , , , )n nf y y y x x x ) on the right hand side of (16), then maximizing the full joint 

pdf f  with respect to  (w.r.t.) , ,   , is equivalent to just maximizing the ln f  on the right 

side w.r.t. , ,    (note that the derivative of the marginal 
1

ln f  on the right w.r.t. any of the 

parameters of interest , ,   , must then be 0 ). 

 

Hence, the maximum likelihood principle reduces to maximizing the conditional likelihood, 

1 2 1 2( , , , | , , , )n nf y y y x x x , where the rv’s 
1 2
, , ,

n
X X X  are fixed to the observed values, 

1 2
, , ,

n
x x x . This is what we mean (statistically) when we say that 

1 2
, , ,

n
X X X  (or the 

corresponding population variable X) are (is) exogenous. 
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However, in order to reach this conclusion, we must be sure that the derivation of the 

marginal 1 1 2ln ( , , , )nf x x x  w.r.t. any of the parameters of interest is 0, i.e., when the other 

parameters occurring in 1 1 2ln ( , , , )nf x x x  in no way depend on the parameters of interest – 

i.e., when the two sets of parameters are so called variation independent, which they actually 

are in the present model as indicated by the following: 

 

The original parametrization of the bivariate normal population pdf is 

( , , , , )
x x y y xy

      , where cov( , ) cov( , )
xy i i

X Y X Y   . These parameters may take 

any values as long as the restrictions, 0, 0, | | 1,
x y

      are fulfilled, (where the 

correlation is ( )
xy x y

    ). 

  

The model that we actually use for the mother/daughter data, represents a reparametrization of 

the distribution with the new parameter vector given by 

 

 

1 2

1 2
( , , , , ) ( , )

x x

 

           

Here 1  represents our parameters of interest and 2  the other parameters. That 
1 2
 and    are 

variation independent should be clear considering that the relationship between  and    is 

one-to-one (written   ): 

 

 [Because:  (i) The relation :    Given any values of ( , , , , )
x x y y xy

      , we 

get unique values of ( , , , , )
x x

       by (as seen before), 

2 2
var( ) var( ) var( )

i i y
e Y Y     ,      

2

xy

x





  , and      

y x
      

 (ii)  The relation :    Given any values of ( , , , , )
x x

      , we get unique 

values of ( , , , , )
x x y y xy

       by 

 
2 2 2

, ,   and 
y xy x y x

                  

 From this we can conclude that the parameters characterizing the distribution of 

mother’s height ( 2 ( , )x x   ) can be anything without affecting , ,   . 

   (End of proof)  ] 

 

This argumentation enables us to give a formal definition  

 

If (i) the parameters of interest ( 1  ) occur in the conditional distribution, 

1 2 1 2( , , , | , , , )n nf y y y x x x  only, and (ii) the parameters of interest, 1 , are variation 

independent of the other parameters, 2 , we say that 1 2, , , nX X X  (or the corresponding 

population variable X) are (weakly) exogenous. 

 

[This implies that 1 2, , , nX X X can be considered having fixed values (i.e., the observed 

values) when making inference about the parameters of interest, and focus our attention on the 
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conditional pdf, 1 2 1 2( , , , | , , , )n nf y y y x x x  (which, in our situation (see (13)) reduces to 

1 1 2 2( | ) ( | ) ( | )n nf y x f y x f y x ]. 

 

 

 

Further comments. 

 

 In time series data (where the index (i) represents time, and where there are 

dependence between the pairs ( , )i iX Y  ), we operate with different concepts (degrees) 

of exogeneity (e.g.,(a) weak exog., (b)strong exog., (c)super exog.) depending on what 

the model is used for (e.g., respectively (a) inference of parameters of interest, (b) 

factual forecasting (based on future predicted 'iX s  ), (c) contra-factual forcasting 

(based on future -valuesiX  set arbitrarily). 

 In the iid case (with independent pairs as here) the different exogeneity concepts 

collapse to the same concept as given in the definition above. 


