ECON 4130 16H

Exercises for seminar week 46

Rice chapter 9: No. 12, 33 (**Hint:** note that there are 0 parameters under H_0 here, so the DF for the Chi-square test must be equal to the number of free parameters in the full model.) No. 40 (Remember that $Z \sim N(0,1) \implies Z^2 \sim \chi_1^2$ - distributed.) (See, e.g., Rice, example C, sec 2.3, p.61) No. 41

Extra exercise

An econometric model contains a response, *Y*, and 6 (exogenous) explanatory variables, $X, Z_1, Z_2, U_1, U_2, U_3$. The data are observations of n = 22 *iid* corresponding random vectors, $(Y_i, X_i, Z_{i1}, Z_{i2}, U_{i1}, U_{i2}, U_{i3})$, and the (full) regression model is (using observed values of the explanatory variables as fixed)

(1)
$$Y_i = \alpha + \beta x_i + \delta_1 z_{i1} + \delta_2 z_{i2} + \gamma_1 u_{i1} + \gamma_2 u_{i2} + \gamma_3 u_{i3} + e_i \text{ for } i = 1, 2, \dots, 22$$

Where, e_1, e_2, \dots, e_n are iid and normal, $e_i \sim N(0, \sigma^2)$.

A. Estimating (1) by OLS gives the following table of sums of squares (using Stata terminology)

Table 1 (for full model)

Source	SS	df
Model	7817	••
Residual	3743	?
Total	11560	?

Fill in the degrees of freedom (df's) in the table. Estimate the error term variance, σ^2 , using an unbiased estimator.

B. A submodel of interest is assuming both $\delta_1 = \delta_2$ and $\gamma_1 = \gamma_2 = \gamma_3$. We want to check if there is evidence in the data against this submodel using an appropriate F-test. We then need to re-estimate the model assuming the submodel (that we call

the "reduced model") to be true. Using OLS for the reduced model implies that we must regress the response *Y* on a modified set of explanatory variables.

Write up the corresponding (to (1)) regression model in the reduced case.

[**Hint:** Introduce two new parameters, δ for the common value of δ_1, δ_2 , and γ for the common value of $\gamma_1, \gamma_2, \gamma_3$, and substitute in (1). Define new regressor (i.e., explanatory) variables whenever necessary.]

C. Estimating the reduced model by OLS gives the following table of sums of squares (using Stata terminology)

Table 2 (1	for the	reduced	model)
------------	---------	---------	--------

/		
Source	SS	df
Model	5332	?
Residual	6228	?
Total	11560	?

Use this information to perform an F-test for testing the sub-model against the more general model in (1).

Calculate the P-value, either approximately using the quantile table 5 in the back of Rice's book, or exactly using (e.g.) the "F.dist" function in Excel, or the F(df1,df2,f) - function (or Ftail(df1,df2,f)-function) in STATA.