Correction note to the lecture note on F-testing

The section in the lecture note on page 12, starting with the heading **Example of testing structural break described in the introduction.** and until Section 5 on page 13, should be replaced by the following.

(The full model is correct, but the reduced model was wrong in the lecture note. The corrected F-test result, however, is quite similar to the one in the lecture note, and the conclusion the same.)

Full model

$$Y_i = \beta_0 + \beta_1 x_i + \beta_2 d_i + \beta_3 d_i x_i + e_i$$
 where $e_1, e_2, \dots, e_n \sim iid$ with $e_i \sim N(0, \sigma^2)$

Reduced model

$$Y_i = \beta_0 + \beta_1 x_i + e_i$$
 where $e_1, e_2, \dots, e_n \sim iid$ with $e_i \sim N(0, \sigma^2)$

The reduced model corresponds to

$$H_0: \beta_2 = \beta_3 = 0$$
 versus $H_1:$ At least one of β_2, β_3 different from 0.

The Stata data base contains the 4 regressor variables, Y, x, d, and $xd = x \cdot d$.

Stata output full model (OLS)

Stata command: regr Y x d xd

Source	SS	df	MS	Number of obs	=	20	
+				F(3, 16)	=	68.92	
Model	5784808.74	3	1928269.58	Prob > F	=	0.0000	
Residual	447637.457	16	27977.341	R-squared	=	0.9282	
				Adj R-squared	=	0.9147	
Total	6232446.2	19	328023.484	Root MSE	=	167.26	
Y	Coef.	Std. Err.	t P	> t [95% Co:	 nf.	Interval]	
х	.2742643	.0459396	5.97 0	.000 .176876	8	.3716518	
d	1639.755	283.2312	5.79 0	.000 1039.33	1	2240.178	
xd	2745789	.0572058	-4.80 0	.000395849	9	153308	
_cons	86.25502	105.3841	0.82 0	.425 -137.149	3	309.6594	

Reduced model (H_0)

$$Y_i = \beta_0 + \beta_1 x_i + e_i$$
 where $e_1, e_2, \dots, e_n \sim iid$ with $e_i \sim N(0, \sigma^2)$
 $\Leftrightarrow H_0: \beta_2 = \beta_3 = 0$

Stata command: regr Y x

Stata output reduced model (OLS)

Source	SS +	df	MS	Number of ob $F(1, 18)$	s = =	20 62.89
Model Residual	4845492.5 1386953.7	1 18	4845492.5 77052.9834	Prob > F R-squared Adj R-square	=	0.0000
Y	•			P> t [95%		-
x _cons	.1748752	.0220523	7.93	0.000 .128 0.005 116.	545	.2212053

The relevant quantities are

$$SS_{full} = 447\,637.457 \qquad df_{full} = 16$$

$$SS_{red} = 1386953.7$$
 $df_{red} = 18$

No. of restrictions under H_0 : $s = df_{red} - df_{full} = 2$

$$F = \frac{\left(SS_{red} - SS_{full}\right)/s}{SS_{full}/df_{full}} = \frac{\left(1\,386\,953.7 - 447\,637.457\right)/2}{447\,637.457/16} = 16.787...$$

 $F \sim F(2,16)$ under H_0 .

P-value (using F.Dist in Excel): $P_{H_0}(F > F_{obs}) = P_{H_0}(F > 16.787) = 0.0001177$, i.e., 0.000, so the evidence for a structural break as defined at 5000 is strong, i.e., the reduced model is rejected.