
 

Econ 4130   2017H 

Exercises for the seminar – week 47     

 
The exercises are based on the postponed exam  2010 H that is reproduced below for 

convenience (slightly edited). 

 

 

Problem 1 

 

Introduction.     When counting the number of members in groups such as the number of  

bacteria per colony, the number of people per household, or the number of animals per 

litter, every single count must necessarily be larger or equal to 1. This excludes, e.g., the 

poisson  distribution as a model for such counts. On the other hand the so-called  

logarithmic series distribution  often proves useful:  

 

A discrete random variable (rv), Y, taking values in {1,2,3, }, is said to be logarithmic 

series distributed if the probability mass function (pmf) is 
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where    is a parameter such that 0 1  . 

 

 

A. Calculate  ( 1)P Y   and ( 2)P Y   when 0.5  . 

 

  

 

B. Show that the expected value of Y is 
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[Hint:   You are reminded of the sum of a geometric series 
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C. (i) Show that the moment generating function (mgf) for Y is given by 

 

  ( ) ln(1 )tM t c e   ,  where c is as given in section B. Explain why ( )M t  

is well defined in an open interval around 0. 

   

 [Hint:   You may need the following result (which you do 

not need to prove) from the theory of series: 
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(ii) Find  Var( )Y  as a function of  . 

 

 

 

D. The data in table 11 are the result of investigating the number of bacteria in each 

of  675 colonies of a certain type of soil bacteria. For example, the table shows 

that 146 of the colonies consisted of 2 bacteria, and 359 colonies had one 

bacterium only.   

 

Table 1   Frequency table of the size of colonies 

 

Bacteria per colony (j) 1 2 3 4 5 6 7 Sum 

Number of colonies observed 

jf  359 146 57 41 26 17 29 675 

 

To ease the calculations we give:  
7
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Let iY  denote the number of bacteria in colony i. Assume that 1 2, , , nY Y Y  (where 

675)n   are independent and identically distributed (iid) where iY  is logarithmic 

series distributed with unknown parameter  . 

 

 (i) Show that the maximum likelihood estimator (mle) of  , ̂ , satisfies the 

equation 
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1 Source: C.A.Bliss and R.A.Fisher, “Fitting the Negative Binomial Distribution to Biological Data”, 

Biometrics 9 (1953): 176-200. 
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  [Hint:  You can skip proving that the solution of (2) actually 

maximizes the log likelihood since the second derivative of the log 

likelihood is slightly complicated here. ] 

 

 (ii) Explain why the moment method estimator (mme) and the mle are the 

same in this case. 

 

 

 

 

E. (i) Introduce the function ( )g t  defined by 

 

   ( )
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   for  0 1t   

 

In figure 1 we have plotted the function, ( )g t , for 0.05 0.9t   

 

Figure 1  
 

   
 

 Use the plot to obtain an approximate (rough) value for the mle estimate of   

based on the data at hand. 
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 (ii) We are also interested in the mean colony size in the population, i.e., 

( )E Y . Explain why the maximum likelihood estimator for ( )E Y , based on the 

proposed model,  is simply ˆ( )E Y Y .  Present your estimate, based on the data in 

table 1,  of the mean number of bacteria per colony for this population. 

 

 

 

 

Problem 2 

There is a complication with the data in table 1 in Problem 1. At the time when the data 

were collected (before 1953) it turned out difficult to count the bacteria in colonies with 

more than 6 bacteria. Hence all the 29 colonies registered as having 7 bacteria in table 1 

should, more correctly, be registered as having 7 or more bacteria. The correct heading in 

the table should have been 7  instead of only 7. In this problem we will try to 

accommodate this complication. 

 

A.  The complication described above implies that the observed values of Y and the 

mle, ̂ , found in Problem 1 are not entirely correct.  Are the true values of Y and 

̂  larger or smaller than the values found in Problem 1 when replacing the count 

7 by 7 ? Give a reason for your answer. 

  [Hint: You can take for granted that the function ( )g t  is strictly 

increasing for 0 1t  . Confer also figure 1 in Problem 1. ]  

 

 

B. Introduction.  As a result of  replacing the count 7 by 7 the true value of Y

cannot be calculated. But we can still estimate ( )E Y  credibly if our chosen model 

for the distribution of Y is realistic. A possible test of the realism of our model is 

the well-known Pearson 2 - test. The 0H  hypothesis states that the model in 

Problem 1 is true (i.e., 1 2, , , nY Y Y  (where 675)n   are iid where iY  is 

logarithmic series distributed with unknown parameter  ).  Under 0H  the 

frequencies in table 1 are then multinomially distributed with 7 categories,  

{1},{2}, ,{6},{ 7}  and respective probabilities, ( )  for 1,2, ,7jp j  , where 
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 Based on this multinomial specification we can determine a corrected mle, the 

observed value of which2 turns out to be ˆ 0.7569obs   (you do not need to prove 

this).  

 

(Note that the index obs stands for the observed value of the random variable in 

focus.) 

 

 Question.    Perform the 2 -test and formulate a conclusion based on 10% level 

of significance. Some of the calculations necessary have been done in table 2. 

Complete the table by filling in the cells with question mark. 

 

Table 2 Partial table of quantities underlying the Pearson 2 -test based on the 

corrected mle ˆ 0.7569obs  3 

 

Category  
j 

Observed 
frequency 

( jO ) 

Mle under 

0H  

( ˆ( )jp  ) 

Estimated 
frequency 

under 
0H  

( jE ) 

2( )j j

j

O E

E


 

1 359 0.535 361.23 0.01 

2 146 0.203 136.71 0.63 

3 57 0.102 68.99 2.08 

4 41 0.058 39.17 0.09 

5 26 0.035 23.72 0.22 

6 17 ? ? ? 

7 29 ? ? ? 

     
Sum 675 1 675 ? 

 

 

 

 

C. (i) Explain why the likelihood function for   used in Problem 1 cannot be 

used for the corrected data where category 7 is replaced by 7 . 

 (ii) Assuming 0H  in section B to be true, set up an expression for the log 

likelihood function for   based on the derived multinomial model in section B.  

 

 

 

                                                 
2 Determined by numerical iterative methods. 
3  The index obs stands for the observed value of the random variable in focus. 
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D. (i)   Maximizing the log likelihood based on the given data, which requires 

numerical iterations, gives the maximum likelihood estimate, ˆ 0.7569obs   

(which you don’t have to show here). Use this to compute a corrected estimate of 

the mean population colony size, ( )E Y  from Problem 1. Compare with the 

corresponding estimate in Problem 1. 

 

 (ii)   It turns out (you don’t need to show this) that the Fisher information for one 

observation (trial) (out of 675n  trials ) in this (multinomial)  model is 
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 , where ( )jp   is the derivative with respect to   of  ( )jp  . 

 It turns out that the estimated value of  ( )I   is  

 

   ˆ( ) (0.7569) 6.6076obsI I    

 

 Use this information to calculate an approximate 95% confidence interval (CI) for 

  and justify the interval from general maximum likelihood theory and Slutsky’s 

lemma. 

 

(iii)   Determine approximate 95% confidence limits for the population mean 

( )E Y  based on figure 1 in Problem 1. 

 

 


