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The moment generating function (mgf) of the gamma ( , )   

distribution and its application 

(Supplementary note to the lecture Monday 25 Sept. on mgf’s) 

 

I did not have time to go through the mgf of the gamma distribution on the lecture and supply 

the mgf here due to the importance of the gamma distribution. 

 

Suppose ~ ( , )X    distributed with pdf 
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 where 0, 0    are parameters. 
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, well defined for all t  .  

Since 0  , the mgf is well defined in an open interval about 0, which implies that all 

moments of X exist (a fact we have proven before more directly). 

Proof:      If t  , we get 
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(Note that the integrand of the last integral is the pdf of the ( , )t    distribution, which 

implies that the integral is 1.)    (End of proof) 

 

Having the mgf tool, we may derive a number of useful properties for the gamma 

distributions: 

(2)  If ~ ( , )X   , then ~ ( ,1)Y X    
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Proof:    We have seen in general that if Y is a linear transformation, Y a bX   (a,b 

constants), the mgf of Y is ( ) ( )at

Y XM t e M bt . Using this on Y X , we get 
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, i.e., the mgf of ( ,1) .Since 

the mgf of any distribution is unique, it follows that ~ ( ,1)Y  . EOP. 

 (Note that this result may be proven directly using cdf’s.) 

 

In general, sums of independent rv’s (
1 2 nY X X X    ) have very complicated 

distributions. Therefore, the following results sometimes turn out as useful. 

 

(3) If 1 2, , , nX X X  are independent and gamma distributed with the same scale ( ), i.e., 

~ ( , ), 1,2, ,i iX i n   , then 1 2 1 2~ ( , )n nY X X X              

Proof:    A general mgf property is that, if 
1 2,X X  are independent with mgf’s 

1 2( ), ( )M t M t  respectively, the mgf of 
1 2Y X X    is 1 2( ) ( ) ( )YM t M t M t . Hence, if  

~ ( , ), 1,2i iX i   , then 
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, i.e., the mgf of 

1 2( , )    . The uniqueness of mgf’s then implies that 1 2 1 2~ ( , )Y X X       . 

Hence, the result is proven for 2n  . For 3n   we have 1 2 3 3Y X X X U X     , 

where U and 3X  are independent and gamma distributed, implying as above that 

1 2 3~ ( , )Y       . Having thus proven the result for 3n  , it follows in the same 

way that it is valid for 4n   and then for  5n  , and so on, step by step, for all natural 

numbers, n.  

(By the way, it may be worth mentioning that this way of reasoning is called induction 

proof and is often used in mathematics.)  EOP 

 

Note.    The assumption that the 'iX s  all have the same scale, is essential. If 

~ ( , ), 1,2,i i iX i    where 1 2  , we get 
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, that is a mgf for 

some distribution that is not a gamma distribution (since it cannot be written in the form of 

(1)). On the other hand, explain yourself why 1 1 2 2Y X X    is gamma distributed (which 

one?). (Hint: use (2) and (3).) 

 

 

Special case I.    If X is exponentially distributed with parameter 0  , ( ~ exp( ))X  , we 

know that ~ (1, )X   distributed. The mgf of X then follows from (1):  
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We also get from (3) that if 
1 2, , , nX X X  are iid and exponential ( ), then 

1 2 ~ ( , )nY X X X n      .  

 

Special case II.  Chi-square distributions. 

(See also supplementary exercise 4 on the net.)   The chi-square distributions turn out to be 

important as approximate or exact inference distributions for many test-problems involving 

several parameters tested jointly (e.g., Pearson’s chi-square test and likelihood ratio testing - 

that both will be discussed later - as well as various regression problems). 
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, where d is a natural number (1,2,3,…), we say that Z is chi square 

distributed with d degrees of freedom (written shortly: 2~ dZ  ) 

 

Some properties: 

(4) If 2~ dZ  ,    ( ) , var( ) 2E Z d Z d    

Proof.     If ~ ( , )X   , we have from before that 
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From (1) we get immediately 

(5) If 2~ dZ  , the mgf is 
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 From (3) we get immediately 

(6) If 1 2, , , nZ Z Z  are independent and chi-square distributed, i.e., 2~ , 1,2, ,
ii dZ i n  , 

then 1 2 nY Z Z Z     is chi square distributed with 1 2 nd d d d     degrees 

of freedom  (i.e., 
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Note. The term “degrees of freedom” comes from applications when one wants to estimate a 

linear model with r unknown parameters based on n observations. The r parameters often 

imply r restrictions on the observations to estimate, leaving d n r   observations (degrees 

of freedom) for the estimation of variances. 

 

(7) If X is standard normally distributed, i.e., ~ (0,1)X N , then 2Y X  is chi-square 

distributed with 1 degree of freedom, i.e., 2

1~Y  . 

(This is a classical result that Rice proves in the basic way using cdf’s. As an 

illustration we may also prove it using mgf’s instead: ) 

 

Proof.    Let 2~ (0,1)  and  X N Y X . The pdf of X is  
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which is the mgf (see (5)) of the 2

1  distribution. The uniqueness of the mgf 

then implies that 2

1~Y  .           EOP  

 

 

Using (6) and (7) we obtain immediately an important technical result that often 

underlies various distribution theorems relevant for handling statistically linear models 

with unknown parameters to be estimated.  

(As an example, Rice uses it as part of the proof (see the first sentence) of 

theorem B of section 6.3 (optional reading), where he proves that if 

1 2, , , nX X X  are iid and normal, 2~ ( , )iX N   , then 
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(8) If 1 2, , , nX X X  are independent and standard normally distributed, i.e., 

~ (0,1), 1,2, ,iX N i n , then 
2 2 2

1 2 ~nY X X X    chi squared distributed with 

n degrees of freedom. 


