ECON 4130 H17

Exercises for no-seminar week 44

(Solutions will be put on the net on Thursday week 44)

Exercise 1

This exercise is based on the **Exam 2004H** - "utsatt prøve", slightly extended and adapted to fit the present curriculum.

The random variable (rv.), Y, has a log-normal distribution with parameters, μ and σ^2 , if the density function (pdf) is given by

$$f(y) = \begin{cases} \frac{1}{\sqrt{2\pi}\sigma} \cdot \frac{1}{y} \cdot e^{-\frac{1}{2\sigma^2} [\ln(y) - \mu]^2} & \text{for } y > 0\\ 0 & \text{otherwise} \end{cases}$$

This is a right skewed distribution with a pdf somewhat similar to the pdf of a gamma distribution. It is sometimes used to model income distributions.

- **A.** Show that, if Y is log-normal (μ, σ^2) then $X = \ln(Y)$ is normally distributed with expectation, μ and variance, σ^2 (i.e., $N(\mu, \sigma^2)$).
- **B.** Explain how the moment generating function (mgf) for X, can be utilized to show that

$$E(Y^k) = e^{k\mu + k^2 \frac{\sigma^2}{2}}$$
 for $k = 1, 2, 3, ...$

C. The variation coefficient of a non-negative rv., Z, denoted by VC(Z), is defined as

$$VC(Z) = \frac{\sqrt{Var(Z)}}{E(Z)}$$

The variation coefficient is a measure of variation. If Z is the income of a person randomly chosen from a population of income earners, VC(Z) is sometimes taken as a measure of income inequality for the population in question.

- (i) Show that the VC is invariant for scale transformations, i.e., show that VC(cZ) = VC(Z) for any constant c > 0.
- (ii) Let *Y* be log-normal (μ, σ^2) . Show that the variation coefficient, that we will denote by γ , is $\gamma = VC(Y) = \sqrt{e^{\sigma^2} 1}$
- (iii) Let Y be gamma distributed, (α, λ) , where α is the shape parameter and λ the scale parameter. Show that the variation coefficient is equal to $1/\sqrt{\alpha}$ and, hence, independent of the scale parameter λ .
- **D.** Let $Z_1, Z_2, ..., Z_n$ be *iid* and non-negative rv's with expectation, $E(Z_i) = \eta$, and variance, $Var(Z_i) = \tau^2$. Otherwise we don't know anything about the common distribution of the Z_i 's. Propose a consistent estimator for the VC in this case, and explain why it is consistent.
- **E.** Let $Y_1, Y_2, ..., Y_n$ be *iid* and log-normally distributed (μ, σ^2) . Show that the maximum likelihood estimators (MLE's) for μ and σ^2 are given by

$$\hat{\mu} = \overline{\ln(Y)} = \frac{1}{n} \sum_{i=1}^{n} \ln(Y_i) \text{ and } \hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^{n} [\ln(Y_i) - \overline{\ln(Y)}]^2 \text{ respectively. } [\mathbf{Hint: } Compare]$$

the log likelihood function with the log likelihood for a normal sample, i.e., study example B in Rice section 8.5]

What is the MLE for the variation coefficient, $\gamma = VC(Y_i)$?

F. Derive the moment estimators (MME's) for μ , σ^2 , and γ , based on $Y_1, Y_2, ..., Y_n$ in question **E**.

G. We have a sample of n = 121 yearly incomes drawn from a population of women (Norway 1998) that is relatively homogenous with regard to the time spent at paid work. Let Y_i denote the income of woman i in the sample. As before we assume that $Y_1, Y_2, ..., Y_n$ is iid and log-normally distributed (μ, σ^2) . Calculate both the MLE- and MME estimates of the population VC, γ , based on the summary data in the table

Statistic	Data
n (sample size)	121
$\frac{1}{n}\sum_{i=1}^{n}Y_{i} (NOK)$	202799
$\frac{1}{n}\sum_{i=1}^{n}Y_{i}^{2}$	46 597 545 146
$\frac{1}{n}\sum_{i=1}^{n}\ln(Y_i)$	12.15916
$\frac{1}{n}\sum_{i=1}^n[\ln(Y_i)]^2$	147.96481

H. It can be shown that the MLE, $\hat{\sigma}^2$, is asymptotically normally distributed in the sense $\sqrt{n}(\hat{\sigma}^2 - \sigma^2) \xrightarrow[n \to \infty]{D} N(0, 2\sigma^4)$ (You do not need to show this here.) Use this to develop an asymptotic 95% confidence interval (CI) for γ based on a corresponding CI for σ^2 . Calculate the interval.

I. A well known¹ fact is that if $X_1, X_2, ..., X_n$ are *iid* and normally distributed,

$$X_i \sim N(\mu, \sigma^2)$$
, then $\frac{\sum\limits_{i=1}^n (X_i - \overline{X})^2}{\sigma^2}$ is (exactly) χ^2 distributed with $n-1$ degrees of

freedom. Use this to find an exact 95% CI for σ^2 , and, from this, an exact 95% CI for γ . Calculate the interval and compare with the approximate CI developed in **H.**

_

¹ See, e.g., Rice section 6.3 (theorem B) for a proof (optional reading).

Exercise 2

Exercise Rice 8: 8 (a) and (b) only.

Hint for (a): Use mle.

Hint for (b): Use section 8.5.3 – in particular the last paragraph before example **B**.

(Notice that there is a hidden application of Slutsky's lemma in Rice's

argument).