Answers to three exercises in the lecture notes to Rice chapter 8

Exercise 1 (page 3)

(i) If $X \sim \operatorname{bin}(n, p)$, we have according to the general theory for the binomial distr. that, for large $n, X \underset{\sim}{\text { approx. }} N(E(X), \operatorname{var}(X))=N(n p, n p(1-p))$, or

$$
\frac{X-n p}{\sqrt{n p(1-p)}} \stackrel{\text { approx. }}{\sim} N(0,1)
$$

But

$$
\frac{X-n p}{\sqrt{n p(1-p)}}=\frac{n(X / n-p)}{\sqrt{n} \sqrt{p(1-p)}}=\sqrt{n} \frac{\hat{p}-p}{\sqrt{p(1-p)}} \stackrel{\text { approx. }}{\sim} N(0,1)
$$

Hence,
$b=\sqrt{p(1-p)}$ and $\hat{b}=\sqrt{\hat{p}(1-\hat{p})}$
where $\hat{p}=X / n$ is consistent, which implies by continuity that also \hat{b} is consistent for b.
(ii) According to theory, if $X \sim \operatorname{poisson}(t \lambda)$ (writing t for n), then $X \stackrel{\text { approx. }}{\sim} N(E(X), \operatorname{var}(X))=N(\lambda t, \lambda t)$ for large t (i.e., such that $t \lambda \geq 10$, say). As in (i) we get

$$
\frac{X-t \lambda}{\sqrt{t \lambda}}=\frac{t(X / n-\lambda)}{\sqrt{t} \sqrt{\lambda}}=\sqrt{t} \frac{\hat{\lambda}-\lambda \text { approx. }}{\sqrt{\lambda}} \sim N(0,1)
$$

Hence $b=\sqrt{\lambda}$ and $\hat{b}=\sqrt{\hat{\lambda}}=\sqrt{\frac{X}{t}}$ is consistent for b.
(iii) According to the central limit theorem, for large n,

$$
\bar{X} \stackrel{\text { approx. }}{\sim} N\left(\mu, \frac{\sigma^{2}}{n}\right)=N(E(\bar{X}), \operatorname{var}(\overline{\mathrm{X}})) .
$$

Hence $\quad b=\sigma$, and, for example, $\hat{b}=S=\sqrt{\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}$ is consistent for b.

Exercise 2 (page 12)

(a)

From $\quad X=\left(\begin{array}{cc}1 & x_{1} \\ 1 & x_{2} \\ \vdots & \vdots \\ 1 & x_{n}\end{array}\right)$ and $X^{\prime}=\left(\begin{array}{cccc}1 & 1 & \cdots & 1 \\ x_{1} & x_{2} & \cdots & x_{n}\end{array}\right)$, we get
$X^{\prime} X=\left(\begin{array}{cc}n & \sum_{i} x_{i} \\ \sum_{i} x_{i} & \sum_{i} x_{i}^{2}\end{array}\right)$
from which the determinant follows directly.
(b)

The inverse of a 2×2-matrix, $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$, is in general given by
$A^{-1}=\frac{1}{a d-b c} \cdot\left(\begin{array}{cc}d & -b \\ -c & a\end{array}\right)$ (check by multiplying A and A^{-1})
where $D=a d-b c$ is the determinant of A, which must be different from 0 for the inverse to exist.

Hence, from (a):

$$
\left(X^{\prime} X\right)^{-1}=\frac{1}{n \sum_{i}\left(x_{i}-\bar{x}\right)^{2}} \cdot\left(\begin{array}{cc}
\sum_{i} x_{i}^{2} & -\sum_{i} x_{i} \\
-\sum_{i} x_{i} & n
\end{array}\right)
$$

Since $\operatorname{cov}(\hat{\beta})=\sigma^{2}\left(X^{\prime} X\right)^{-1}$, we find the variances on the main diagonal, giving the expressions in the exercise.
(c) From the matrices in (a) and (b) we get, writing $D=n \sum_{i}\left(x_{i}-\bar{x}\right)^{2}$ for the determinant,

$$
\hat{\beta}=\binom{\hat{\beta}_{0}}{\hat{\beta}_{1}}=\left(X^{\prime} X\right)^{-1} X^{\prime} Y=\frac{1}{D} \cdot\left(\begin{array}{cc}
\sum_{i} x_{i}^{2} & -\sum_{i} x_{i} \\
-\sum_{i} x_{i} & n
\end{array}\right) \cdot\binom{\sum_{i} Y_{i}}{\sum_{i} x_{i} Y_{i}}
$$

We now find $\hat{\beta}_{1}$ as the second element in the vector $\hat{\beta}$:

$$
\begin{aligned}
\hat{\beta}_{1} & =\frac{1}{D} \cdot\left(-\sum_{i} x_{i} \sum_{i} Y_{i}+n \sum_{i} x_{i} Y_{i}\right)=\frac{1}{D} \cdot\left(n \sum_{i} x_{i} Y_{i}-n^{2} \bar{x} \bar{Y}\right)= \\
& =\frac{n\left(\sum_{i} x_{i} Y_{i}-n \bar{x} \bar{Y}\right)}{n \sum_{i}\left(x_{i}-\bar{x}\right)^{2}}=\frac{\sum_{i}\left(x_{i}-\bar{x}\right)\left(Y_{i}-\bar{Y}\right)}{\sum_{i}\left(x_{i}-\bar{x}\right)^{2}}=\frac{S_{x Y}}{S_{x}^{2}}
\end{aligned}
$$

Exercise 3 (page 14)

Since the determinant of the covariance matrix $\Sigma=\left(\begin{array}{ll}\sigma_{11} & \sigma_{12} \\ \sigma_{12} & \sigma_{22}\end{array}\right)$ is $D=\sigma_{11} \sigma_{22}\left(1-\rho^{2}\right)$, we get the inverse as in exercise 2 b

$$
\Sigma^{-1}=\frac{1}{D}\left(\begin{array}{cc}
\sigma_{22} & -\sigma_{12} \\
-\sigma_{12} & \sigma_{11}
\end{array}\right)
$$

and

$$
\begin{aligned}
& (x-\mu)^{\prime} \Sigma^{-1}(x-\mu)=\frac{1}{D}\left(x_{1}-\mu_{1}, x_{2}-\mu_{2}\right) \cdot\left(\begin{array}{cc}
\sigma_{22} & -\sigma_{12} \\
-\sigma_{12} & \sigma_{11}
\end{array}\right) \cdot(x-\mu)= \\
& \quad=\frac{1}{D}\left[\left(x_{1}-\mu_{1}\right) \sigma_{22}-\left(x_{2}-\mu_{2}\right) \sigma_{12}, \quad-\left(x_{1}-\mu_{1}\right) \sigma_{12}+\left(x_{2}-\mu_{2}\right) \sigma_{11}\right] \cdot\binom{x_{1}-\mu_{1}}{x_{2}-\mu_{2}}= \\
& \quad=\frac{1}{D}\left[\left(x_{1}-\mu_{1}\right)^{2} \sigma_{22}-\left(x_{2}-\mu_{2}\right)\left(x_{1}-\mu_{1}\right) \sigma_{12}-\left(x_{1}-\mu_{1}\right)\left(x_{2}-\mu_{2}\right) \sigma_{12}+\left(x_{2}-\mu_{2}\right)^{2} \sigma_{11}\right]= \\
& \\
& =\frac{1}{\sigma_{11} \sigma_{22}\left(1-\rho^{2}\right)}\left[\left(x_{1}-\mu_{1}\right)^{2} \sigma_{22}-2\left(x_{1}-\mu_{1}\right)\left(x_{2}-\mu_{2}\right) \sqrt{\sigma_{11}} \sqrt{\sigma_{22}} \rho+\left(x_{2}-\mu_{2}\right)^{2} \sigma_{11}\right]= \\
& \quad=\frac{1}{1-\rho^{2}}\left[\left(\frac{x_{1}-\mu_{1}}{\sqrt{\sigma_{11}}}\right)^{2}-2 \rho\left(\frac{x_{1}-\mu_{1}}{\sqrt{\sigma_{11}}}\right)\left(\frac{x_{2}-\mu_{2}}{\sqrt{\sigma_{22}}}\right)+\left(\frac{x_{2}-\mu_{2}}{\sqrt{\sigma_{22}}}\right)^{2}\right]
\end{aligned}
$$

Multiplying this by $-\frac{1}{2}$, we see that the exponent in (12) reduces exactly to the exponent in Example F in Rice section 3.3. We also see that the expression in the denominator in the pdf in example F (Rice) is the same as in (12) from the expression of the determinant D.

