ECON 4130 H18

Exercises for seminar week 44

Exercise 1

This exercise is based on the Exam 2004H -"utsatt prøve", slightly extended and adapted to fit the present curriculum.

The random variable (rv.), Y, has a log-normal distribution with parameters, μ and σ^{2}, if the density function (pdf) is given by

$$
f(y)= \begin{cases}\frac{1}{\sqrt{2 \pi} \sigma} \cdot \frac{1}{y} \cdot e^{-\frac{1}{2 \sigma^{2}}[\ln (y)-\mu]^{2}} & \text { for } y>0 \\ 0 & \text { otherwise }\end{cases}
$$

This is a right skewed distribution with a pdf somewhat similar to the pdf of a gamma distribution. It is sometimes used to model income distributions.
A. Show that, if Y is log-normal $\left(\mu, \sigma^{2}\right)$ then $X=\ln (Y)$ is normally distributed with expectation, μ and variance, σ^{2} (i.e., $N\left(\mu, \sigma^{2}\right)$).
B. Explain how the moment generating function (mgf) for X, can be utilized to show that

$$
E\left(Y^{k}\right)=e^{k \mu+k^{2} \frac{\sigma^{2}}{2}} \quad \text { for } \quad k=1,2,3, \ldots
$$

C. The variation coefficient of a non-negative rv., Z, denoted by $\operatorname{VC}(Z)$, is defined as

$$
\mathrm{VC}(Z)=\frac{\sqrt{\operatorname{Var}(Z)}}{\mathrm{E}(Z)}
$$

The variation coefficient is a measure of variation. If Z is the income of a person randomly chosen from a population of income earners, $\mathrm{VC}(Z)$ is sometimes taken as a measure of income inequality for the population in question.
(i) Show that the VC is invariant for scale transformations, i.e., show that $\mathrm{VC}(c Z)=\mathrm{VC}(Z)$ for any constant $c>0$.
(ii) Let Y be log-normal $\left(\mu, \sigma^{2}\right)$. Show that the variation coefficient, that we will denote by γ, is $\gamma=\operatorname{VC}(Y)=\sqrt{e^{\sigma^{2}}-1}$
(iii) Let Y be gamma distributed, (α, λ), where α is the shape parameter and λ the scale parameter. Show that the variation coefficient is equal to $1 / \sqrt{\alpha}$ and, hence, independent of the scale parameter λ.
D. Let $Z_{1}, Z_{2}, \ldots, Z_{n}$ be iid and non-negative rv's with expectation, $\mathrm{E}\left(Z_{i}\right)=\eta$, and variance, $\operatorname{Var}\left(Z_{i}\right)=\tau^{2}$. Otherwise we don't know anything about the common distribution of the Z_{i} 's. Propose a consistent estimator for the VC in this case, and explain why it is consistent.
E. Let $Y_{1}, Y_{2}, \ldots, Y_{n}$ be iid and log-normally distributed $\left(\mu, \sigma^{2}\right)$. Show that the maximum likelihood estimators (MLE's) for μ and σ^{2} are given by $\hat{\mu}=\overline{\ln (Y)}=\frac{1}{n} \sum_{i=1}^{n} \ln \left(Y_{i}\right)$ and $\hat{\sigma}^{2}=\frac{1}{n} \sum_{i=1}^{n}\left[\ln \left(Y_{i}\right)-\overline{\ln (Y)}\right]^{2}$ respectively. [Hint: Compare the log likelihood function with the log likelihood for a normal sample, i.e., study example B in Rice section 8.5]

What is the MLE for the variation coefficient, $\gamma=\mathrm{VC}\left(Y_{i}\right)$?
F. Derive the moment estimators (MME's) for μ, σ^{2}, and γ, based on $Y_{1}, Y_{2}, \ldots, Y_{n}$ in question \mathbf{E}.
G. We have a sample of $n=121$ yearly incomes drawn from a population of women (Norway 1998) that is relatively homogenous with regard to the time spent at paid work.

Let Y_{i} denote the income of woman i in the sample. As before we assume that $Y_{1}, Y_{2}, \ldots, Y_{n}$ is iid and log-normally distributed (μ, σ^{2}). Calculate both the MLE- and MME estimates of the population VC, γ, based on the summary data in the table

Statistic	Data
$\frac{n}{}$ (sample size)	121
$\frac{1}{n} \sum_{i=1}^{n} Y_{i}$ (NOK)	202799
$\frac{1}{n} \sum_{i=1}^{n} Y_{i}^{2}$	46597545146
$\frac{1}{n} \sum_{i=1}^{n} \ln \left(Y_{i}\right)$	12.15916
$\frac{1}{n} \sum_{i=1}^{n}\left[\ln \left(Y_{i}\right)\right]^{2}$	147.96481

H. It can be shown that the MLE, $\hat{\sigma}^{2}$, is asymptotically normally distributed in the sense $\sqrt{n}\left(\hat{\sigma}^{2}-\sigma^{2}\right) \xrightarrow[n \rightarrow \infty]{D} N\left(0,2 \sigma^{4}\right)$ (You do not need to show this here.) Use this to develop an asymptotic 95% confidence interval (CI) for γ based on a corresponding CI for σ^{2}. Calculate the interval.
I. A well known ${ }^{1}$ fact is that if $X_{1}, X_{2}, \ldots, X_{n}$ are iid and normally distributed, $X_{i} \sim N\left(\mu, \sigma^{2}\right)$, then $\frac{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}{\sigma^{2}}$ is (exactly) χ^{2} distributed with $n-1$ degrees of freedom. Use this to find an exact $95 \% \mathrm{CI}$ for σ^{2}, and, from this, an exact $95 \% \mathrm{CI}$ for γ. Calculate the interval and compare with the approximate CI developed in \mathbf{H}.

Exercise 2

Exercise Rice 8: 8 (a) and (b) only.

[^0]Hint for (a): Use mle.
Hint for (b): Use section 8.5.3 - in particular the last paragraph before example B. (Notice that there is a hidden application of Slutsky's lemma in Rice's argument).

[^0]: ${ }^{1}$ See, e.g., Rice section 6.3 (theorem B) for a proof (optional reading).

