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1.1   

Chapter 5 gives an introduction to probabilistic approximation methods, but is 

insufficient for the needs of an adequate study of econometrics.  The common non-linear 

nature of economic models often requires approximation methods for a tractable 

empirical analysis. An excellent summary of asymptotic (approximation) techniques can, 

for example, be found in chapter 4 in W.H. Greene’s book, “Econometric Analysis”, 

Prentice Hall (any edition). With the tool kit in that book you can handle a large number 

of approximation problems common in econometrics. This course does not go all the way 

to Greene’s summary, but should represent a good basis. The step from this course up to 

Greene’s level should not be very large. 

 

There are many probabilistic convergence concepts available, of which two, convergence 

in probability and convergence in distribution are discussed or implied in Rice. 

 

 

Def. 1  Convergence in Probability.  

 

 

Example 1:   If  1 2, ,X X  are iid with ( )iE X   and 2Var( )iX  , then  
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     (one of the laws of large numbers proven by Chebyshev’s 

inequality).  

 

Example 3 below shows that 
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 , and also  2

P

S S    (proven by the continuity 

properties of limits in probability described below). This shows that  ˆ X  ,   
2 2ˆ S  , 

and ˆ S   are all consistent estimators as defined in the next paragraph..  

Let 1 2, , , ,nY Y Y  be a sequence of r.v.’s. Then nY  converges in probability to a 

constant, c, as n  (written shortly  
P

n
n

Y c

  or  

n

plim nY c


 ), if , for any 

0  ,   (| | ) 0nP Y c     as n  . 

Or equivalently:  
P

n
n

Y c

   if,  for any 0  ,   (| | ) 1nP Y c     as n  . 
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Definition of consistency. In general, suppose that   is an unknown parameter in a 

model and ̂  an estimator for   depending on n observations. If ˆ
P

n
 


 , we say that ̂  

is a consistent estimator for  .  

 

This is a rather weak property, but is usually considered a minimum requirement for the 

behavior of an estimator when the number of observations grows large. Even if it is a 

weak property, it turns out to be a very useful (and much used) concept in econometric 

handling of approximation problems.  

 

[Note on the law of large numbers. In the lectures we gave a simple proof of the 

law of large numbers for sample means based on Chebyshev’s inequality. That 

proof assumes that the variance, 2var( )iX  , exists. It can be proven, however, 

that this assumption is not necessary. Thus: If  1 2, ,X X  are iid with ( )iE X  , 

then  
P

n
X 


  (without any assumptions on the variance).  This is a classical result 

in probability theory which requires a somewhat deeper proof. ] 

 

 

1.2   Trivial distributions.      It is sometimes convenient to interpret constants as 

special r.v.’s.  Let  a  be any constant (a real number). We may interpret a as a random 

variable by introducing the r.v., X, by  ( ) 1P X a  . Hence X can only take one value, a. 

The probability mass function is then given by    ( ) ( ) 1p a P X a   . By the definition  

of expectation and variance (that does not exclude this special case), we have (check 

formally!),  ( )E X a  and  var( ) 0X  . 

 

The cdf of X becomes 

 

(1) 
0  for   

( ) ( )
1   for   

x a
F x P X x

x a


   


       (see figure 1) 

Figure 1 
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We may call this distribution the trivial distribution at a. 

Note that ( )F x  is continuous everywhere except at x a . 

 

(2)       The moment generating function (mgf) for X with the trivial distribution at a, is  

( ) taM t e .   

(i.e.  ( ) ( )tX ta taM t Ee e P X a e    ). 

 

Let 1 2, , , ,na a a  be a sequence of constants converging to a as n  (see appendix 1 

(A1) for the concept of a sequence). This means (slightly more precise than presented in 

Sydsæter I):  For any fixed 0  , there is a number N such that  | |na a    for every 

n N .  From this definition it follows that convergence of sequences in the usual sense 

can be considered as a special case of convergence in probability. 

 

 

(3)  

 

 

 

Proof:   Let  0   be arbitrarily small. We need to show that (| | ) 1n
n

P a a 


   . But this 

probability must be either 0 or 1 according to if  | |na a    is false or true (since , ,  and na a   

are constants and therefore fixed and not subject to random variation). Hence, choosing N such that 

| |na a    for all  n N , we have 

 

 
1   if  | |   is true, which it is for all  

(| | )
0  if  | |   is false                                        

n

n

n

a a n N
P a a

a a






  
   

 
 

 

This shows that  (| | ) 1n
n

P a a 


    since the probability is 1 for all n large enough.   Q.E.D1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                 
1 Q.E.D. means “end of proof”. It is short for the latin expression: quod erat demonstrandum. 

 If  n
n

a a

 ,  then  

P

n
n

a a

    (where the na ’s are interpreted as r.v.’s) 
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1.3    The continuity property of probability limits.   

(See appendix 1 (A2) for some useful facts about continuous functions.) 

 

Theorem 1 

 

 

 

(4)

  

 

[A proof for those interested (optional reading) is given in appendix 2.] 

 

 

Example 2.     Suppose that 
P

n
n

X c

 . Then  also  

1
1

P

n n
n

Z X c
n 

 
   

 
. Here we use that 

( , )h x y xy  is continuous (see appendix 1 (A2)), and that 
1

1 1
P

n
n

Y
n 

    because of  

(3).   

[ I.e. ( , ) ( ,1) 1
P

n n n nh X Y X Y h c c c      since 
P

nX c  and  1
P

nY  . ] 

 

 

Example 3.     Suppose that  1 2, ,X X  are iid with ( )iE X   and 2var( )iX  . Then 

2 2 2

1

1
( )

1

n P

i
n

i

S X X
n






  

   (i.e. 

2S is consistent for 
2 ).   

 

Reason (short argument):   It follows from theorem 1 that  

2 2 2 2 2 2 2

1

1
( ) 1

1

n P

i
n

i

n
S X X

n n
   




 
            

  

 

Explanation: By the law of large numbers (see further details below),  

2 2 2 2

1

1
( )

n P

i i

i

X E X
n

 


   ,  and 
P

X  . Then, since 
2( , )h x y x y   is continuous, 

we get from theorem 1 that  

 

 2 2 2 2 2 2 2 2

1 1

1 1
( ) , ( ( ), )

n n P

i i i
n

i i

X X h X X h E X
n n

    


 

 
       

 
  .  

Let , , 1,2,n nX Y n   be two sequences of r.v.’s such that  
P

n
n

X c

   and 

P

n
n

Y d

 . Let ( )g x  be continuous at  x = c and  ( , )h x y  be continuous at x = c 

and y = d.  Then 

 ( ) ( )
P

n
n

g X g c

    and  ( , ) ( , )

P

n n
n

h X Y h c d

  

(This is also true when h has more than two arguments.) 
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Finally, multiplying by 
1

n

n 
 (which converges to 1 as n ) and the same argument as 

in example 2, we get 2 2
P

S  .  

From this we also obtain that  2
P

S S     since  ( )g x x  is continuous (theorem 1 

again).  

 

[Some more details:   Put 
2

i iZ X . Since 1 2, ,X X  are iid, then 1 2, ,Z Z  are iid as well 

with 
2 2 2( ) ( )i iE Z E X     . Then, by the law of large numbers, 

2 2 2

1

1
( )

n P

i i
n

i

X Z E Z
n

 




    . (Note that, because of the note to example 1, we do not 

have to bother about the variance of iZ .)] 

 

 

Exercise 1.    Show that the sample correlation,  XY

X Y

S
r

S S
  is a consistent estimator for 

the population correlation,  
cov( , )

corre( , )
var( )var( )

X Y
X Y

X Y
   , based on a iid random 

sample of pairs,  1 1 2 2( , ), ( , ), , ( , )n nX Y X Y X Y    (meaning that the n pairs are independent 

and have all the same joint distribution).   

 

Hint:  To prove the consistency of the sample covariance, write  

1

1

1

n

XY i i

i

n
S X Y XY

n n 

 
    

 .  Note that 
1

1 n

i i

i

X Y
n 

  is a mean 
1

1 n

i

i

Z Z
n 

  , where 

, 1,2,i i iZ X Y i   are iid rv’s.  Hence, Z  converges in probability to 

( ) ( ) cov( , )i i i i i X YE Z E X Y X Y     . Then use the continuity of the function 

1( , , )g x y z x y z   , and finally that 2 ( , , )
z

g x y z
x y

  also is continous. 

 

Note that r is not unbiased as an estimator of  . On the other hand, the fact that it is 

consistent, justifies its use for large n. Simulation studies and other investigations show in 

addition that it behaves reasonably well even in smaller samples, and is therefore the 

most common estimator of  . 
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1.4    Convergence in distribution 

 

In the introductory statistics course, the following version of the central limit theorem 

(CLT) is presented:   

 

Let 1 2, ,X X  be iid with  E( )iX    and  var 2( )iX    (implying that  E( )X    and  

2

var( )X
n


 ).  Then, for large n ( 30n   usually considered sufficient), we have 

 

 
approximately

~ (0,1)n

X X
Z n N

n

 

 

 
       ( “~” means “is distributed as”) 

This statement is somewhat un-precise. What we mean is that “ nZ  converges in 

distribution to Z, where Z ~ N(0, 1), as n  ”.  (We write this shortly,  
D

n
n

Z Z

 , or 

simply  
D

nZ Z ).  The formal mathematical definition, given in Rice, is: 

 

 

 

Def. 2   (Convergence in distribution) 
 

 

 

 

 

 

 

 

 

This means:  If the limit cdf, ( )F y , is continuous at y a  and y b ,  then 

( ) ( ) ( ) ( ) ( ) ( )n n n
n

P a Y b F b F a F b F a P a Y b


          

Hence,  ( ) ( )nP a Y b P a Y b      for large n.  

 

The importance of this property follows from the fact that we quite often find ourselves 

in a situation where nY  (being e.g. a complicated estimator) has a very complicated 

distribution while the limit distribution of Y is quite simple (often normal). Hence, for 

large n, we may be able to replace complicated probability statements about  nY with 

simple probability statements about Y. 

 

Note that, if the limit distribution is N(0,1) (which is often the case), then the limit cdf 

(usually written  ( ) ( )x P Z x   , where ~ (0,1)Z N ) is continuous for all x. 

 

Let  1 2, ,Y Y  be a sequence of r.v..’s with cdf’s, ( ) ( )n nF y P Y y  , and Y a r.v. 

with cdf  ( ) ( )F y P Y y  .  We say that 
D

n
n

Y Y

  if  ( ) ( )n

n
F y F y


   for every 

y where the limit cdf, ( )F y , is continuous. 

(Then, for large n, 
approx.

~ ( )nY F y  ) 
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Another useful technical comment is that convergence in probability can be interpreted as 

a special case of convergence in distribution by the following lemma: 

 

(5)   

 

 

 

 

 

 

[For those interested, a proof is written out in appendix 2.] 

 

1.5    Determination of limit distributions 

 

It turns out difficult (usually) to use the definition of limit in distribution directly to 

derive a limit distribution. Therefore, a number of techniques and tools have been 

developed for this purpose in the literature. One important tool is by means of moment 

generating functions (mgf’s) formulated as theorem A in Rice, chapter 5, and cited below 

in theorem 2. (An even more important tool is by means of so-called characteristic 

functions, (see Rice at the end of section 4.5), which requires complex analysis and is 

omitted here.) 

 

Theorem 2  (Theorem A in Rice, chapter 5) 

 

Note that if ( )F y  is the cdf of a normal distribution (which is most often the case), then 

( )F y  is continuous for all y. So, in that case, ( ) ( )n
n

F y F y

  for all y, and 

( ) ( )nP a Y b P a Y b      for all a and b when n is large. 

 

 

 

 

 

 

 

Let  , 1,2,nY n   be a sequence of r.v.’s with cdf’s,  ~ ( ) ( )n n nY F y P Y y  . 

Suppose that the mgf’s,  ( ) ntY

nM t Ee , exist for all n.  Let  Y be a r.v. with cdf, 

( )F y  and  mgf  ( ) tYM t Ee , and assume that  ( ) ( )n
n

M t M t

  for all t in an 

open interval that contains 0. Then  
D

n
n

Y Y

   (i.e.  ( ) ( )n

n
F y F y


  for all y 

where ( )F y  is continuous).   

 
P

n
n

Y c

  is equivalent to  

D

n
n

Y Y

  where Y is the trivial r.v. at c (i.e.  

( ) 1P Y c  ) with the trivial cdf as in (1). (The last statement we may simply 

write 
D

n
n

Y c

 .) 
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Example 4 (example A in Rice, section 5.3) 
 

We simplify the argument in Rice by using l’Hôpital’s rule instead of his series 

argument.   

Let  ~ pois( ), 1,2,n nX n   where  1 2, ,   is a sequence of numbers (see appendix 1 

(A1)) such that 
n

n



  .  Then, since nX  is poisson distributed, we have  

E( ) var( )n n nX X   . We will show that the standardized  

 

 
E( ) 1

var( )

n n n n
n n n

n n n

X X X
Z X

X




 

 
      

 

converges in distribution to ~ (0,1)Z N , which follows if we can show that the mgf of nZ  

converges to the mgf of  Z ~ N(0, 1), i.e. 
2 2( ) t

ZM t e . The mgf of nX  is (see Rice, 

section 4.5, example A): 

 

 
( 1)

( )
t

n

n

e

XM t e
 

  

 

We have from before that, if X and Y are r.v.’s such that  Y a bX  , the mgf of Y is,  

( ) ( )at

Y XM t e M bt .  Hence 

 

 
( 1)1

( )
t n

n n n

n n

t t e

Z X

n

M t e M t e e
  



  
 

   
 
 

      or 

 

  ln( ( )) 1n

n

t

Z n nM t t e


          

 

Put  
1

n

x


 .    Since n
n



  , we have  0

n
x


 . From l’Hôpital’s rule we get 

 

  
2 2

2 2 x 0 x 00

1 1
ln( ( )) 1 lim lim

2 2 2n

xt xt tx
xt

Z
x

t e xt te t t e t
M t e

x x x x 

  
         

 

Since 
xe  is a continuous function of x,  

2 2( )
n

t

Z
n

M t e

 , implying  ~ (0,1)

D

n
n

Z Z N

 .  

(End of example.) 
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We will now repeat Rice’s proof of the central limit theorem (CLT) supplied with some 

details. Note that this proof can be taken as optional reading, which means that a proper 

understanding of the proof is not required for exam purposes.  However, the result itself 

including the more practical version given in the corollary in (6) below, must be 

understood properly. 

 

Theorem 3  (CLT,  theorem B in Rice, section 5.3) 

 

 

[Note.  The proof is only given here for the special case that the mgf of 
jX ,  ( ) E( )jtX

M t e , exists in 

an open interval containing 0, which is not always the case (see the note to (A5) in appendix 1). 

The proof for the general case is almost identical to the given one, but based instead on 

characteristic functions (defined by  ( ) E( )jitX
g t e  where i is the complex number, 1 ). 

Characteristic functions exist for every probability distribution. Such a proof, however, requires 

some knowledge of complex analysis, and is omitted here. ] 

 

 

 

Proof (optional reading):    

Assume that the common mgf of 1 2, ,X X ,  ( ) E( )itX
M t e , exists in an open 

interval, ( , )a b , where 0a b  . Then, according to (A7) in appendix 1, ( )M t , 

has continuous derivatives of all orders in ( , )a b .  

 

 Since 1 2, ,X X  are independent and identically distributed, the mgf of nS  is 

 

         
n

i=1 1 2 1 2

t

( ) E e E E E E ( )
i

n n

n

X
tX tXtX tX tX tX n

SM t e e e e e e M t
 
    
 
 

 

 

 Putting  n
n

S
Z

n
 , we obtain the mgf,   ( )

n

n

Z

t
M t M

n

 
  

 
 

 

 Applying Taylor’s formula (see (A4) in appendix 1) to ( )M t , we have 

Let  1 2, ,X X  be a sequence of iid  r.v.’s with  E( ) 0iX   and  2var( )iX  .  

Let  
1

n

n i

i

S X


    (implying  E( ) 0nS    and  2var( )nS n ).  Then  

~ (0,1)
var( )

D
n n

n
n

S S
Z N

S n 
     (or  ( )n

n

S
P x x

n 

 
   

 
 for all x since 

( ) ( )x P Z x    is continuous everywhere). 
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2 3

( ) (0) '(0) ''(0) '''( )
2 3!

t t
M t M tM M M c       where c is somewhere between 0 

and t. We have  
0

(0) E( ) 1iX
M e  ,  '(0) E( ) 0iM X  , and  

2 2''(0) E( )iM X   . Hence 

 

  
2 3

2( ) 1 '''( )
2 6

t t
M t M c    

 

 Substituting into ( )
nZM t , we obtain 

 

  

2 3

2( ) 1 ''( )
2 6n

n

n

Z n

t t

t n n
M t M M c

n

 




    
    

             
 
  

 

 or 

 

  
2

( ) 1
2n

n

Z n

t
M t R

n

 
   
 

  where  
3

3

3 2

'''( )

6

n n

t
R M c

n

 , and nc  lies between 

0 and   
t

n
.   

 

We will now prove that  0n
n

n R


  , i.e. 
3

3
'''( ) 0

6
n n

n

t
n R M c

n 
      

Since nc lies between 0 and 
t

n
, and 0

n

t

n 
 , we must have that 0nc  . 

Therefore, '''( ) '''(0)nM c M   since '''( )M t  is continuous in 0 (see (A7) in 

appendix 1). Hence, '''( )nM c  is bounded, and '''( ) / 0nM c n  , which proves 

that 0n
n

n R


  . 

We finally get  
2

( ) 1 1
2n

n n

n
Z n

at
M t R

n n

   
       

  
 where  

2 2

2 2
n n

t t
a n R     

Thus, using (A6) in appendix 1, we get 
2 2( )

n

t

ZM t e , which is the mgf of 

(0,1)N . Property A in Rice, section 4.5, tells us that the mgf uniquely determines 

the probability distribution. Hence,  ~ (0,1)
D

n
n

Z Z N

 .           Q.E.D. 
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In practice the following reformulation of the CLT is the most common or practical: 

 

Corollary (CLT) 

 

 

 

(6) 

 

 

 

 

Proof.  We show how the result follows from Rice’s CLT in theorem 3: Put i iY X   .  

Then,  1 2, ,Y Y  ~ iid, E( ) 0iY   and  2var( )iY  . We can then use theorem 3: 

 1 ( )
~ (0,1)

n

i D
i

n

Y
nX n n X

Z N
n n

 

 





 
  


 

 

 
approx.( )

~ (0,1)
n X

N





  for large n   

approx.
2( ) ~ (0, )n X N    for large n 

 

 
2approx.

~ (0, )X N
n


    for large n   

2approx.

~ ( , )X N
n


  for large n.   Q.E.D. 

 

[Note that we in the proof several times have used the well known property of the normal distribution: If 
2~ ( , )X N   , then  

2 2~ ( , )a bX N a b b    where a,b  are constants.] 

 

 

The next result that we present, is an extremely useful result for statistical practice: 

 

Theorem 4  (Slutsky’s lemma)2 

 

 

 

 

 

 

 

 

                                                 
2 Note that in econometric literature (see e.g. in Greene’s book, “Econometric Analysis”), it is usually 

theorem 1 on the continuity property of plim that is referred to by “Slutsky’s theorem”, while, in the 

statistical literature  it is usually this theorem 4 that is meant. It appears that Slutsky proved several simpler 

versions of  both these two and other limit results in a paper in 1925. In this course we will refer to theorem 

4 as Slutsky’s lemma (or theorem), since this result is one of the most important results of the course, and 

since it takes a little bit of training in exercises to learn to use it properly.  

If 
1 2, ,X X  ~ iid, with E( )iX   and  2var( )iX  , then  

( )
~ (0,1)

D

n

n X
Z N



 


 ,  which means that  

2approximately

~ ( , )X N
n


  

 for large n. 

Let  , ,n n nA B X  be r.v.’s such that  
P

n
n

A a

  (constant), 

P

n
n

B b

  (constant), 

and  
D

n
n

X X

 .  Then  

D

n n n
n

A X B aX b


    

In particular,  if 0
P

n
n

A

 , then  

P

n n n
n

A X B b


    (because of (5) above). 
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The proof is a straightforward, but somewhat lengthy, ,  - argument along the lines 

illustrated in appendix 2, and is omitted here. 

 

 

Here we illustrate the result by making some arguments for confidence intervals 

presented in the introductory statistics course more precise. 

 

 

 

 

 

Example 5. (Confidence intervals) 

 

(Note: It is recommended that you study this example thoroughly and learn the argument 

used. In particular note how Slutsky’s lemma is used in the argument. The example also 

gives an example of why the concept of consistency is useful.)  

 

Suppose 1 2, ,X X  are iid, with E( )iX   (unknown) and  2var( )iX  .  We want a 

confidence interval (CI) with degree of confidence, 1  , for the unknown  . Even if 

the common distribution, ( )F x , for the iX ’s, is unknown, the distribution of X  is 

approximately known for large n ( 30n   usually considered sufficient) because of the 

CLT, which we utilize as follows:  

 

For large n,    
approx.

~ (0,1)n

X
Z N

n






 .  Hence,  

2 2

( ) 1nP z Z z        where 
2

z  is 

the upper 2 -point in (0,1)N .  Manipulating the probability (do it!), we get (as in the 

basic statistics course) 

 

 
2 2

1P X z X z
n n

 

 
 

 
      

 
 

 

Thus, if  is known, then an approximately 1   CI for   is given by 

 

(7) 
2

X z
n




  

 

In practice  is usually unknown, but according to Slutsky’s lemma,   can be replaced 

by a consistent estimator, as the following argument shows: 

 

Put  
ˆ

n

X
U

n






  where  

2 2

1

1
ˆ ( )

1

n

i

i

S X X
n




  

  is consistent for   (see example 

3). We then have 
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ˆ ˆˆ

n n

X X
U Z

n n

   

  

 
      

 

Since  1
ˆ

P

n

 

 
   (see theorem 1 and example 3), and 

D

n
n

Z Z

 , we have from Slutsky’s 

lemma 1 ~ (0,1)
D

n
n

U Z Z N

   . Hence, for large n,  

2 2

( ) 1nP z U z       . 

Manipulating this (do it!), we get 

 

 
2 2

ˆ ˆ
1P X z X z

n n
 

 
 

 
      

 
 

 

which gives the approximate  1   CI for  :   
2

ˆ
X z

n



 . Simulation studies show that 

the approximation is usually satisfactory for 30n  .  

 

Notice that the CI is the same as the CI in (7) where we have replaced the unknown   

with a consistent estimator ̂ , and that it is Slutsky’s lemma that allows us to do that. 

 

 

We have a similar state of affairs for poisson- and binomial models: 

 

The poisson case:   Suppose that the number, X, of working accidents during t time units 

in a large firm, is ~ pois( t ), where   is the unknown expected (i.e. long run average) 

accident rate per time unit in the firm. Then E( ) var( )X t X  , which implies that  

ˆ X

t
   is an unbiased estimator of  .  Since  ˆvar( ) 0

tt





  , it follows from 

Chebyshev’s inequality (check!) that ̂  is consistent for   as well as t   (i.e., 

ˆ
P

t
 


 ). From example 4 we get that 

 

 
ˆ ˆ

~ (0,1)
D

t
t

X t t t
Z t Z N

t t

    

   

  
        since  t   as t  . 

 

Slutzky’s lemma shows that we can replace   by ̂  in the denominator of tZ  without 

destroying the approximation substantially, i.e., 
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ˆ

1 ~ (0,1)
ˆ ˆ

D

t t
t

U t Z Z Z N
  

 



        since  1

ˆ

P


  as t  , using 

that the function, ( )g x x  is continuous in x. We then get for large t ( the criterion 

10t   is usually considered sufficient ), the following approximation 

 

 
2 2

ˆ ˆ
ˆ ˆ 1P z z

t t
 

 
   
 
      
 
 

 

then gives an approximate 1   CI for  :  
2

ˆ
ˆ z

t



   . 

 

Discuss the binomial case yourself. 

 

 

 

Appendix 1 (mathematical prerequisites for Rice, chapter 5) 

 

First some review of sequences and continuous functions: 

 

(A1)   Sequences  (see also Sydsæter I, section 6.4 on sequences (“tallfølger”)) 

 

An example of a sequence is: 

(i)  
1 1 1 1

1, , , , , ,
2 3 4 n

    (or described more shortly simply as 
1 1

1, , ,
2 3

 ) 

which is a sequence of numbers continued indefinitely. It consists of infinitely many 

numbers, one for each integer, n. Abstractly we can describe a sequence (of numbers), 

1 2 3, , , , ,na a a a  simply as a function, na , defined for each natural number n. Thus, the 

sequence (i) can also be described as  

 

 
1

   for  1,2,3,na n
n

  .   

 

We see that this particular sequence converges to 0 as n increases, i.e.,  

1
lim lim 0n
n n

a
n 

  . However, in general a sequence does not have to converge. For 

example, the sequence (ii) does not converge 

 

(ii) 1, 1, 1, 1, ,( 1) ,n          (or ( 1)    for  1,2,3,n

na n     ) 

 

Most number sequences we meet in this course, however, converge. For example 
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(iii) 
3 4

2, , , , ,
2 3 1

n

n 
     (or     for  2,3,4,

1
n

n
a n

n
 


  ) 

 

which converges to 1.   (Note that 
1 1 1

1 1
1 1 1

n n

n n n

 
   

  
  as  n   ). 

 

A famous sequence is the following: 

 

(iv)  
1

1    for  1,2,3,

n

n
n

 
  

 
 

 

which converges to 2,718281828e   as n   (proven in A6 below). 

 

We also talk about a sequence of random variables,  1 2 3, , , , ,nX X X X , which just 

means that the r.v. nX  is well defined for any natural number. When we say that the 

infinite sequence of r.v.’s,  1 2 3, , ,X X X , is an iid sequence, we mean that all the 

(infinite number of) variables are observed under identical conditions (i.e., they have the 

same distribution) and observed independently of each other. From this sequence we can 

define other sequences, for example the sequence of means ( )X :  
1 2 3, , ,X X X ,  where  

1 1X X ,    

2 1 2

1
( )

2
X X X   

……. 

 

1 2

1
( )n nX X X X

n
              and so on.  

 

(Note that we have here put an index, n, on the mean 
nX  to underline its dependence on 

n, i.e., the number of observations used. Usually we drop that index from the notation if 

the number of observations is fixed and understood from the context.) 

 

 

 

(A2) Continuous functions (review) 

 

Definition (see Sydsæter I, section 6.9):  A function ( )y f x  is continuous in x if for 

any sequence, 1 2 3, , ,x x x  that belongs to the area of definition of f and converges to x, (

lim n
n

x x


 ), then  also ( ) ( )nf x f x   as  n 3.  

                                                 
3 Similarly for several arguments in f:  ( , )z f x y is continuous in ( , )x y  if, for every sequence, 

1 2, ,x x x  and  1 2, ,y y y  we have that ( , ) ( , )  as  n nf x y f x y n  . 
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In this course we often need to check that a function is continuous in order to use various 

results from the theory. There are some simple rules you should know that makes it easy 

in most cases to check that a function is continuous simply by looking at the expression 

for the function: 

 

(i) All elementary functions used in this course are continuous. Those include e.g.: 

linear functions, y ax b   where a,b are constants,  

power functions, ny x where n is an integer, or  
ry x  for any real r when 0x  , 

exponentials, exp( ) xy x e   or xy a  for any 0,a    

log functions, log( )y x  when 0x  , 

the gamma function, ( )y x   when 0x  . 

 

(ii) If ( )y f x  and ( )y g x  are both continuous, then all the following functions 

are continuous as well: 

 (a) ( )y c f x   where c is a constant, 

 (b) ( ) ( )y f x g x   

 (c) ( ) ( )y f x g x   

 (d) ( ) ( )y f x g x   when ( ) 0g x    

 (e) ( ( ))y f g x    -  a function of a function. 

 

(iii) The rules under (ii) are still valid if f and g depend on more than one variable. For 

example, if ( , )f x y  and ( , )g x y  are both continuous in x and y, then 

( , ) ( , ) ( , )h x y f x y g x y  is continuous in x and y (when ( , ) 0g x y  ) and so on. 

 

 

Examples:   

Using (i) and (ii)(a and b), we see that 52 3 4y x x    is continuous, and, more 

generally, any polynomial in x.  

 
2( , )h x y x xy   is continuous since both 

2x  and xy  are continuous (the last one because 

of (iii)). 

 

The pdf of the N( 2, )   distribution,  
2

2

1
( )

2
1

( )
2

x

f x e






 

 , we immediately see is 

continuous since:  

x   is continuous    2

2

1
( )

2
x 


    is continuous (using (i) and (ii)e and noting that 

2

1

2
  is just a constant),    



 17 

 
2

2

1
( )

2
x

e



 

 is continuous (using (i) and (ii)e),  

( )f x  is continuous (using (ii)a). 

 

 

 

The following results are much used in probability theory (a motivation can be found in 

Sydsæter I, section 7.6). 

 

(A3)

  

 

 

 

 [Note.  The theory of infinite series is not treated in the mathematics curriculum, except 

geometric series, so we will not go into this here. We only mention that the precise 

mathematical meaning of the infinite sum is as a limit of a corresponding sequence of 

numbers (see A1 above),   

2

1 ,        1, 2,3,
2! !

n

n

a a
s a n

n
      .    

Then it can be shown that 

   

2

n n

lim lim 1
2! !

n

a

n

a a
e a

n
s

 

    
 

  
 

,  

is well defined and true for every a – which is the precise meaning of the statement in (i) 

(we say that the series is convergent if the corresponding sequence converges).  

 

The only additional result from the theory of infinite series we need is the last statement 

that a common factor can be taken outside the sum. This particular series is mainly used to 

derive the mgf  for a poisson r.v. (see Example A in Rice, section 4.5):  ~ pois( )X   

implies that the mgf  is  
( 1)

( ) E( )
t

tX e
M t e e

 
  ]  

 

 

 

 

 

 

 

 

Much of approximation theory in mathematics and probability theory is based on the 

famous Taylor’s formula (see Sydsæter I, section 7.6): 

(i)    For any real a,  ae  can be expressed as an infinite series 

 
2

0

1
! 2! !

i n
a

i

a a a
e a

i n





        

(ii)    If c is a common factor, it can be taken outside the sum,     

  
0 0! !

i i
a

i i

a a
c c ce

i i
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(A4)

  

 

 

[Note:    In (A4) we say that ( )f x  is expanded around 0x  . From (A4) it follows that 

we can expand ( )f x  around any other value, x  , where f is differentiable: Write 

( ) ( )f x f x     and define ( ) ( )g h f h  where h x   . Then 

(0) ( )g f   and  
( ) ( )(0) ( )n ng f  . Applying (A4) to ( )g h , we obtain an expansion 

of ( )f x  around x  : 

(A5)     
1

( ) ( 1)( ) ( )
( ) ( ) ( ) '( ) ( ) ( )

1! ! ( 1)!

n n
n nx x x

f x g x f f f f c
n n

  
   


  

      


 

where c is a number lying somewhere between   and x.] 

 

 

Example 6.    Rice section 4.6 gives examples of finding approximate expressions of 

expectations and variances. Let X be a r.v. with E( )X   and  2var( )X  . Suppose 

we want the expectation and variance of a transformed r.v., ( )Y g X . If g is 

complicated it is often hard to find ( )E Y  and var(Y) exactly. If ( )g x  is differentiable 

around x  , however, we can easily obtain approximate values by using Taylor 

expansion around  . Ignoring the error term, we have from (A5) with n =1:  

 

 ( ) ( ) '( )( )g X g g X      

 

By taking expected value and variance on both sides, we get (note that ( )g   and  '( )g   

are constants) 

 

 ( ( )) ( )E g X g    and   2 2var( ( )) [ '( )]g X g    

 

Let ( )f x  be 1n  times differentiable in an interval that contains 0 and x. 

Then, ( )f x  can be approximated by a polynomial as follows 

 

 
2

( )

1( ) (0) '(0) ''(0) (0) ( )
1! 2! !

n
n

n

x x x
f x f f f f R x

n
       

 

where the error term, 1( )nR x , is   
1

( 1)

1( ) ( )
( 1)!

n
n

n

x
R x f c

n




 


, where c 

is a number lying somewhere between 0 and x. 
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By including an extra term in the expansion, we may obtain a (hopefully – it depends on 

the error term) better approximation to the expectation: 

 

 2''( )
( ) ( ) '( )( ) ( )

2

g
g X g g X X


         

gives 

 
2

( ( )) ( ) ''( )
2

E g X g g


    (read example B in Rice, sec. 4.6) 

Note that it is usually not a good idea in this context to include many terms in the Taylor 

approximation since terms like  ( )rX   for larger r are often statistically quite unstable, 

which may destroy the approximation.  (End of example.) 

 

 

 

From (A4) we can now derive the following much used result (also used in the proof of 

the CLT): 

 

 

(A6)

  

 

 
Proof (optional reading):  Taking log on both sides, the result follows if we can show that  

ln 1+
n

n

n

a
n a



 
  

 
  (since 

xe  is a continuous function4).  Put  n
n

a
x

n
 . Then 

n n
n

n x a a


   . Applying (A4) to the function,  ( ) ln(1+x)f x n  , with only one term plus 

error, we get  ( ) (0) '( )
1

n
f x f f c x x

c
  


, where c is between 0 and x. Note that  (0) 0f 

. Therefore, ( ) ln(1 )
1 1

n
n n

n
n

n x a
f x n x a

c 


     


, using that 

n
n

n x a


   and that 

0n
n

c

 . The last statement follows since nc  always lies between 0 and nx  (implying  

0 | | | |n nc x  ), and 0n
n

n

a
x

n 
   since the sequence, , 1,2,na n     converges to a, and 

therefore must be bounded (i.e., there is a number C such that | |na C  for all n).     Q.E.D. 

                                                 
4 By definition the continuity of  

xe  means that for any sequence, 1 2 3, , ,x x x  converging to x, (

lim n
n

x x


 ), then  also nx xe e   as  n .  Put  ln 1 n
n

a
x n

n

 
   

 
. 

If  , 1,2,na n   is a sequence of numbers(see Sydsæter I, section 6.4) 

converging to a number, a (i.e. 
n

n
a a


 ), then 

  1

n

an

n

a
e

n 
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Note: The rest of appendix 1 and 2 is optional reading. 

 

 

In order to make the proof of the CLT (theorem 3, page 8) completely rigorous we need 

one more mathematical fact. 

 

(A7) 

 

 

 

 

 

 

 

[Note.    This result is not hard to prove, but requires results from more advanced integration theory, and is 

therefore omitted here. Note also that (A7) shows that the assumption that ( )M t  exists in an open 

interval around 0, is a quite strong assumption on the distribution of X. It implies that moments, 

E( )rX , of all orders 1,2,r   exist. This follows since,  
( )E( ) (0)r rX M  then exists for all 

r.   The assumption is valid for most of the common distributions met in this course, but there are 

notable exceptions. For example it is not true for t-distributions, since, if X is t-distributed with 

degrees of freedom, then it can be shown that E( )rX  exists only for r  . ] 

 

Appendix 2 (some proofs) 

 

Proof of (4)  (optional reading) 
We will prove the h(x,y)-case. Try to write out a proof for the simpler g(x)-case yourself 

(in case you don’t realize that the g-case follows directly from the h-case). 

Suppose 
P

n
n

X c

  and  

P

n
n

Y d

 and that ( , )h x y  is continuous for ,x c y d  . Choose 

an 0   arbitrarily small. We need to prove that (| ( , ) ( , ) | ) 1n n
n

P h X Y g c d 


   . 

According to the meaning of continuity (see e.g. Sydsæter I, sec. 6.9), there is a 0   

such that, whenever | |x c    and  | |y d   , then  | ( , ) ( , ) |h x y h c d   .  

 

Define events, , ,n n nA B C  by  (| | )n nA X c    ,  (| | )n nB Y d    ,  and 

(| ( , ) ( , ) | )n n nC h X Y h c d    .   

 

We then have  n n nA B C   which implies that  ( ) ( )n n nP C P A B  .     (Note that if A, 

B are events such that A B , or  A B  interpreted as sets, then ( ) ( )P A P B ).  

According to the definition of probability limit,  ( ) 1n
n

P A

   and  ( ) 1n

n
P B


 .   

This implies that  ( ) 1n n
n

P A B


   since 

 If the mgf, ( ) E( )tXM t e  of a r.v., X, exists for all t in an open interval 

containing 0 (i.e. for all ( , )t a b  where 0a b  ), then the n-th derivative, 
( ) ( )nM t , exists for all  1,2,n   in this interval. This implies, in particular 

that  ( ) ( )nM t  is continuous in ( , )a b  for all n.  
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( ) ( ) ( ) ( ) 1 1 1 1n n n n n nP A B P A P B P A B          as n   (Note that 

( ) ( ) 1n n nP A B P A    implies that  ( ) 1n nP A B  ).  Hence, since 

( ) ( )n n nP C P A B  , also  ( ) 1nP C   as n .      Q.E.D. 

 

 

Proof of (5)  (optional reading) 

i)  Suppose that 
P

n
n

Y c

 .  We need to prove that  

D

n
n

Y Y

  where ( ) 1P Y c  . Let the 

cdf of 
nY  be ( )nF y  and the cdf of Y be ( )F y , i.e. the trivial cdf at c (see 1.2) 

 

 
0  for   y

( ) ( )
1   for   y

c
F y P Y y

c


   


           Thus  ( )F y  is continuous for all `y c . 

Hence, according to the definition of convergence in distribution, we need to show that 

( ) ( )n
n

F y F y

  for all  `y c , or  ( ) 0n

n
F y


  for  y c  and  ( ) 1n

n
F y


  for y c .  

Again we use that if A B , then ( ) ( )P A P B .  Suppose y c  (or  0y c  ). Then the 

following events satisfy 

 

 (| | ) ( ( ) ) ( ( ) )n n nY c y c y c Y c y c c y c Y c y c                  

 (2 ) ( )n nc y Y y Y y       

Hence  ( ) ( ) (| | ) 1n n n
n

F y P Y y P Y c y c


         since 
P

n
n

Y c

 .  Therefore, we must 

have that  ( ) 1n
n

F y

 . 

Now, suppose y c  (i.e. 0c y  ). We have 

 

 ( ) ( ) ( ) (| | ) (| | )
2

n n n n n

c y
Y y Y y c Y c y Y c c y Y c


                 

Thus,  ( ) ( ) | | 0
2

n n n
n

c y
F y P Y y P Y c



 
      

 
,  which implies that  ( ) 0n

n
F y


 , 

and we have proven that 
D

n
n

Y Y

 . 

 

ii)   Now, conversely, suppose that  
D

n
n

Y Y

  where ( ) 1P Y c  . Then 

( ) ( )n
n

F y F y

  for all  `y c . Let  0   be arbitrary small. We have 

 

 (| | ) ( ) ( ) ( ) ( )n n n n nP Y c P c Y c P c Y c F c F c                       
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Since ( )F y  is continuous for y c    and  y c   , the last expression converges to  

( ) ( ) 1 0 1F c F c        as n .  Hence  (| | ) 1n
n

P Y c 


   , and we have 

proven that  
P

n
n

Y c

 .       Q.E.D. 


