Lecture note on the interpretation of regression coefficients

1) The effect of *X* **in the simple linear regression model**

To fix ideas, let *Y* = consumption of a certain class of goods and *X* = income, for a randomly chosen individual from the population. (X, Y) is jointly distributed with a joint pdf, $f(x, y)$ (the population distribution). The dependence of the response, *Y*, on the explanatory variable, *X*, is usually studied by means of the conditional distribution of *Y* for fixed values of *X* (i.e., $X = x$), with pdf, $f(y|x) = f(x, y)/f_1(x)$, where the marginal pdf for *X*, is

$$
f_1(x) = \int_{-\infty}^{\infty} f(x, y) dy
$$
. The regression function is simply the expected value of $(Y | X = x)$ in

f (*y* | *x*), i.e., $\mu(x) = E(Y | x) = \int_0^{\infty} y f(y | x) dy$ $= E(Y | x) = \int_{-\infty}^{\infty} y f(y | x) dy$, which expresses the expected response for a

given fixed value, $X = x$. In the simple linear regression model we postulate that $\mu(x)$ is a linear function

$$
(1) \qquad \mu(x) = E(Y \mid x) = \alpha + \beta x
$$

In this model the regression coefficient, β , can be interpreted as the effect of a unit change of *X* (i.e., $(X = x) \rightarrow (X = x + 1)$) on the expected change of the response, *Y*.

Elaboration. Let Y_1 be the consumption for a randomly chosen individual with income, $X = x$, and Y_2 correspondingly for a randomly chosen individual with $X = x + 1$. Then the pdf's of Y_1 , and Y_2 are $f(y|x)$ and $f(y|x+1)$ with expected values, $\mu(x)$ and $\mu(x+1)$, respectively. The expected difference becomes β since values, $\mu(x)$ and $\mu(x+1)$, respectively. The expected difference becomes β sin
 $E(Y_2 - Y_1) = E(Y_2) - E(Y_1) = \mu(x+1) - \mu(x) = \alpha + \beta(x+1) - \alpha - \beta x = \beta$

$$
E(Y_2 - Y_1) = E(Y_2) - E(Y_1) = \mu(x+1) - \mu(x) = \alpha + \beta(x+1) - \alpha - \beta x = \beta
$$

Note how the interpretation of β is derived from the meaning of the function, $\mu(x) = E(Y | x)$.

Note also that this interpretation *does not* apply to a single individual. It does not say anything about the expected response when a *single* individual increases the income from $X = x$ to $X = x + 1$. For getting information on such effects we will need at least two observations of *X* and *Y* for each individual at two different points in time (i.e., panel data).

If we want the effect of 10 (say) units change in *X*, the same calculation gives

$$
\mu(x+10)-\mu(x)=10\beta.
$$

2) The effect of *X***, controlling for** *Z* **(wealth)**

Now consider *Z* (e.g., wealth) as an additional explanatory variable that may influence *Y*. We want to find the effect on the expected response of a unit change of *X* - *controlling for Z*. Suppose the postulated regression function is

(2)
$$
\mu(x, z) = E(Y | x, z) = \alpha + \beta x + \gamma z
$$

which is the expectation in the conditional distribution of *Y* for fixed values of $X = x$ and $Z = \overline{z}$, with pdf,

$$
f(y \mid x, z) = \frac{f(x, y, z)}{f_1(x, z)}
$$
, where the marginal pdf of (X, Z) is $f_1(x, z) = \int_{-\infty}^{\infty} f(x, y, z) dy$,

and where $f(x, y, z)$ is the joint pdf of (X, Y, Z) .

We are now interested in the expected difference between two rv's, Y_1, Y_2 (as in the elaboration under 1), where

- *Y*₁ is the consumption for a randomly chosen individual with income, $X = x$ and Z=z (i.e., $Y_1 = (Y | X = x, Z = z)$)
- Y_2 is the consumption for a randomly chosen individual with income, $X = x + 1$ and $Z=z$ (i.e., $Y_2 = (Y | X = x+1, Z = z)$).

Notice that Y_1 and Y_2 both have the same value, *z*, of *Z* (which is what we mean by "controlling for *Z*"). This is, of course, to make the comparison between Y_1 and Y_2 more fair.

Then, the expected difference becomes

(3) $E(Y_2 - Y_1) = E(Y_2) - E(Y_1) = \mu(x+1, z) - \mu(x, z) = \alpha + \beta(x+1) + \gamma z - \alpha - \beta x - \gamma z = \beta$ Then, the expected difference becomes

(3)
$$
E(Y_2 - Y_1) = E(Y_2) - E(Y_1) = \mu(x+1, z) - \mu(x, z) = \alpha + \beta(x+1) + \gamma z - \alpha - \beta x - \gamma z = \beta
$$

Thus, β can be interpreted as the expected change in the response (*Y*) between two subpopulations of individuals where all individuals in the first subpopulation have $X = x$ and all individuals in the other have $X = x + 1$, and where all individuals in both groups *have the same value* of the wealth ($Z = z$). This is often expressed by saying that β is "the effect of a unit change of *X* on (expected) *Y*, *ceteris paribus* – which translates to "everything else equal." Alternatively, β is sometimes called "*the partial effect* of a unit change in X (controlling for other explanatory variables)".

An advantage with this particular model is that the cet. par. effect of *X* reduces to a single parameter (β) no matter what the wealth (Z) is.

[Notice, in passing, that if the values of *Z* were different for Y_1 and Y_2 , e.g., $Z = z_1$ for Y_1 and $Z = z_2$ for Y_2 , the calculation in (3) gives,

3
 $E(Y_2 - Y_1) = E(Y_2) - E(Y_1) = \mu(x+1, z_2) - \mu(x, z_1) = \beta + \gamma(z_2 - z_1)$, which , which shows that the effect of a unit change in X - in that case - is partly due to differences in the wealth $(if \gamma \neq 0, of course).]$

3) The effect of *X***, controlling for** *Z* **(wealth) and** *V* **(age)**

Now we look at the conditional distribution of *Y* for fixed values, $X = x, Z = z, V = v$, with pdf 1 $(y | x, z, v) = \frac{f(x, y, z, v)}{f(x, v)}$ $\frac{\lambda}{(x, z, v)}$ *f* $(y | x, z, v) = \frac{f(x, y, z, v)}{f(x, v)}$ $f(x, y, z, v)$, where the marginal pdf of (X, Z, V) is $f_1(x, z, v)$ $f_1(x, z, v) = \int_0^{\infty} f(x, y, z, v) dy$ $\mu(x, z, v) = \overline{E(Y | x, z, v)}$ $=\int f(x, y, z, v) dy$. The expectation in this distribution is a function of *x*, *z*, and *v*,

The effect of a unit change in *X* (ceteris paribus), can be calculated as above

$$
\mu(x+1,z,v) - \mu(x,z,v)
$$

In the special case that we postulate a linear regression model, $\mu(x, z, v) = \alpha + \beta x + \gamma z + \delta v$, this calculation gives us bectal case that we postulate a linear regression model, $\mu(x, z, v) = \alpha + \beta x + \gamma z + c$
culation gives us
 $\mu(x+1, z, v) - \mu(x, z, v) = \alpha + \beta(x+1) + \gamma z + \delta v - (\alpha + \beta x + \gamma z + \delta v) = \beta$

$$
\mu(x+1, z, v) - \mu(x, z, v) = \alpha + \beta(x+1) + \gamma z + \delta v - (\alpha + \beta x + \gamma z + \delta v) = \beta
$$

so the cet. par. effect of a unit change in *X* (sometimes also called "the income-effect on consumption") reduces to a single parameter, β , no matter what the wealth and age are.

4) Modelling interaction between *X* **(income) and** *Z* **(wealth)**

It is imaginable that the income-effect on consumption is different between rich and poor people. If this is the case, we say there is an *interaction* between income and wealth. An easy way to model this is to include the product term, *xz* (also called an interaction term), in the regression function

$$
E(Y \mid x, z) = \mu(x, z) = \alpha + \beta x + \gamma z + \partial x z
$$

1

Note that although this regression function is a non-linear function of *x* and *z*, we still call it *a linear regression model* since it is linear in the parameters, α , β , γ , and δ . Being linear in the parameters implies that it can be estimated by usual least squares techniques (e.g., OLS in the case of homoscedasticity, i.e., when we can postulate that $var(Y | x, z) = constant)$ ¹.

The cet. par. effect of a unit change in *X* can be calculated as before

par. effect of a unit change in *X* can be calculated as before
\n
$$
\mu(x+1, z) - \mu(x, z) = \alpha + \beta(x+1) + \gamma z + \delta(x+1)z - (\alpha + \beta x + \gamma z + \delta x z) = \beta + \partial z
$$

¹ If you wish to estimate this model by Stata (say), you need 4 variables, each with n observations, in the Stata data matrix: the response y, and 3 explanatory variables, $x1 = x$, $x2 = z$, and $x3 = xz$. Then the following stata command for OLS does it: regr y x1 x2 x3

Hence (e.g.), if δ < 0, the income-effect on consumption will be smaller for rich than for poor people.

If there are several explanatory variables, the price for including all sorts of interactions in the model is a large number of extra parameters in the regression function. For example, if we include *V*=age as an explanatory variable, a full interaction regression function could look like
 $\mu(x, z, v) = \alpha + \beta_1 x + \beta_2 z + \beta_3 v + \gamma_1 xz + \gamma_2 xv + \gamma_3 zv + \gamma_4 xzv$

$$
\mu(x, z, v) = \alpha + \beta_1 x + \beta_2 z + \beta_3 v + \gamma_1 xz + \gamma_2 xv + \gamma_3 zv + \gamma_4 xzv
$$

The interaction term, xzy , is called a $2nd$ order interaction term. Check yourself that the cet. par. effect of a unit change of *X*, now becomes,

$$
\mu(x+1, z, v) - \mu(x, z, v) = \beta_1 + \gamma_1 z + \gamma_2 v + \gamma_4 z v
$$

5) The income effect on consumption may also depend on income

Consider now, for simplicity, only *X* (income) as explanatory. Postulate a regression function

$$
E(Y \mid x) = \mu(x) = \alpha + \beta x + \gamma x^2
$$

(This is also a linear regression model that may be well estimated by OLS under the assumption of homoscedasticity since it is linear in the parameters, α, β, γ .)²

The income-effect on consumption now becomes

<u>.</u>

ome-effect on consumption now becomes
\n
$$
\mu(x+1) - \mu(x) = \alpha + \beta(x+1) + \gamma(x+1)^2 - (\alpha + \beta x + \gamma x^2) = \beta + \gamma(2x+1)
$$

Hence (e.g.), if $\gamma < 0$, the income effect is smaller for high-income people than for lowincome people in this model.

² To estimate this model in Stata (say), you need 3 variables (each with n observations) in the data matrix: the response y, and 2 explanatory variables, $x1 = x$, $x2 = x^2$, and the OLS command becomes, regr y x1 x2