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ECON 4130 

Harald Goldstein, revised Nov. 2019 

Introduction to F-testing in linear regression models 
(Lecture note to lecture Monday 18.11.2019) 

1 Introduction 

  

 Some general points: 

 An F-test usually is a test in regression models where several parameters are 

involved jointly in the null hypothesis in contrast to a T-test that concerns only 

one parameter. 

  The recipe (see page 5) for constructing a F-test in a regression model is based on the 

source table (also called the anova table) from two regression runs, one under the full 

model, and one under the reduced model ( 0H  ).  

 

 The F-test can often be considered a refinement of the more general likelihood ratio 

test (LR) considered as a large sample chi-square test (see, e.g., the appendix below, 

optional reading).  

 The F-test can (e.g.) be used as an exact test in the special case that the error term 

in a regression model is normally distributed. This is in the same way as the T-

test for a single parameter, being an exact test in a model with normally 

distributed data, can be considered a refinement of a more general large sample 

Z-test (usually achieved by an application of Slutsky’s lemma). 

 The F-test (as the T-test) can, since they are exact tests, be used also for small data sets 

in contrast to the large sample chi-square tests (and large sample Z-tests), but require 

additional assumptions of normally distributed data (or error terms). 

 Note also that, if the null-hypothesis consists of only one parameter, then the F and T 

test statistics satisfy 2F T  exactly, so that a two-sided T-test with d degrees of 

freedom is equivalent to a F-test with 1 and d degrees of freedom. 

 

 

 

 

Example from no-seminar exercise week 41  (Hong Kong consumer data). 

iY   Consumption (men): housing, including fuel and light. 

iX   Income  (i.e., we use total expenditure as a proxy).    

1,2, ,i n   where 20n   consumers.    
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Testing of structural break as an example of F-testing 

This is a typical F-test type of problem in a regression model.  

 

Full model (including the possibility of a structural break between lower and 

higher incomes) 

Suppose 1 1 2 2( , ), ( , ), , ( , )n nX Y X Y X Y   are iid pairs as ( , ) ~ ( , ) ( | ) ( )XX Y f x y f y x f x  (where 

( , )f x y  denotes the joint population pdf of ( , )X Y . 

As discussed before (see appendix 1 in the lecture note on prediction and the iid models), 

when all parameters of interest are contained in the conditional pdf ( | )f y x  , we do not need 

to say anything about the marginal pdf ( )Xf x , and we can consider all iX  as fixed equal to 

their observed values, ix .   

Let D be a dummy for higher income,  
1 if  5000

0 if  5000

X
D

X


 


  

Note that D is a function of X. 

 

For using the F-test we need to postulate1 a normal and homoscedastic pdf for ( | )f y x , i.e., 

 2( | ) ~ ( | ),Y X x N E Y x  , where 

 

                                                 
1 The F-test is an exact test under normality of the error term. If this assumption is doubtful, then one may use a 

likelihood ratio test (LR), based on asymptotical normality of estimators, which provides an approximate test for 

moderately large n. The LR test uses the 
2

df  distribution for providing the critical value, where the degrees of 

freedom (df) is equal to the df of the numerator of the corresponding F-test – i.e., equal to the number of 

independent restrictions tested. 
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Household expenditures men

 Lower inc. (< 5000) 
  

Higher inc. (> 5000) 
  

 Y =cons. X=inc. Y=cons. X=inc. 

1 497 1532 1585 6582 

2 839 2448 1641 10615 

3 798 3358 1981 5371 

4 892 2416 1746 6748 

5 755 2385 1865 9731 

6 388 1429 1524 5637 

7 617 2972   

8 248 773   

9 1180 4004   

10 619 1606   

11 253 738   

12 661 1659   

13 238 864   

14 1199 2899   
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0 2 1 3

0 1 2 3

0 1

( ) ( ) if  1, i.e., for 5000
( | )

if  0, i.e., for 5000

x d x
E Y x x d dx

x d x

   
   

 

    
     

  
 

 

indicating a structural break if at least one of 2 3,   is different from zero. 

 

 Note.   It is common to separate between two types of variables in regression 

models like this, explanatory and regressor variables. The present model has one 

explanatory variable, x, and three regressor variables, 
1 2 3, ,x x x d x x d      . 

 

Considering the observed X’s as fixed, we may express the corresponding model for the data 

as 

   

(1)    0 1 2 3i i i i i iY x d d x e          where   1 2, , , ~ne e e iid   with 2~ (0, )ie N  . 

 

 (or, in terms of the regressor variables,  
0 1 1 2 2 3 3i i i i iY x x x e         ) 

 

We want to test the null hypothesis of no structural break as expressed by the 

Reduced model 

 

(2)    0 1i i iY x e      where   1 2, , , ~ne e e iid   with 2~ (0, )ie N   . 

 

which is the same as testing 

 

 0 2 3: 0 and 0H      against  1 2 3:  At least one of ,H    0  (i.e., the full model). 

 

We see that 0H  here contains two restrictions on the betas – so an F-test is proper here. 

  

The F-test has a simple recipe, but to understand this we need to define the F-distribution and 

5 simple facts about the multiple (homoscedastic) regression model with iid and normally 

distributed error terms. First the F-distribution: 

 

2 Introduction to the F-distribution 

(see Rice, section 6.2, optional reading) 

 

Definition.    If 1 2,Z Z  are independent and chi-square distributed with 1 2,r r  degrees of 

freedom (df) respectively (in short  2~ , 1, 2
jj rZ j   ), then 
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 1 1

2 2

Z r
F

Z r
   has a distribution called the F-distribution with 1 2 and r r  degrees of 

freedom (in short  1 2~ ( , )F F r r  ). 

 

 

 

 

 

 

  [ Pdf (optional reading): 

   
 

   
 

1
1 1 2

2
1

1
1 22 1 2 2

1 21 1
1 1 22 2

( )
( ) 1 ( )

r r r r

F

r r r
f x x r r x

r r r

    
   
   

  for 0x      

   ( ( ) 0 for 0Ff x x  )    Expectation:  2
2

2

  for 2
2

r
r

r



  ] 

 

 
 

Notes  

 The F-distribution is a one-topped non-symmetric distribution on the positive axis 

concentrated around 1 (note that, since ( )j jE Z df r  , then   1j jE Z r   ). 

 If 1 2~ ( , )F F r r , then  2 11 ~ ( , )F F r r   (follows directly from definition). 

 Table 5 in the back of Rice gives only upper percentiles for various F-distributions. If 

you need lower percentiles, use the previous property (a lower percentile of F is an 

upper percentile of  1 F ). 

 

 

The basic tool for performing a F-test is the “Source table” in a Stata-output2, which 

summarizes various measures of variation relevant to the analysis.  

 

                                                 
2 Other programs call this “Anova table”. Anova stands for “analysis of variance”. 

F(2,16)

F(6,16)

0
.2

.4
.6

.8
1

y

0 1 2 3 4 5
x

Two F-densities (both with expectations 16/14 = 1.14)
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Full model 

0 1 2 3i i i i i iY x d d x e          where   1 2, , , ~ne e e iid   with 2~ (0, )ie N   

 

Stata output full model.        (OLS - command:    regr Y D DX X ) 

 

 
      Source |       SS       df       MS (=SS/df)     Number of obs =      20 

-------------+------------------------------           F(  3,    16) =   68.92    

       Model |  5784808.74     3  1928269.58           Prob > F      =  0.0000 

    Residual |  447637.457    16   27977.341           R-squared     =  0.9282 

-------------+------------------------------           Adj R-squared =  0.9147 

       Total |   6232446.2    19  328023.484           Root MSE      =  167.26 

 

------------------------------------------------------------------------------ 

          Y  |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

           D |   1639.755   283.2312     5.79   0.000     1039.331    2240.178 

          DX |  -.2745789   .0572058    -4.80   0.000    -.3958499    -.153308 

           X |   .2742643   .0459396     5.97   0.000     .1768768    .3716518 

       _cons |   86.25502   105.3841     0.82   0.425    -137.1493    309.6594 

------------------------------------------------------------------------------ 

 

 

 

 Recipe for the F-test of the reduced model against the full model 

 

 Run two regressions, one for the full model and one for the reduced. 

 Pick out the residual sums of squares (i.e., 
residualSS  that we call  and full redSS SS  

respectively) from the two source tables. 

 Pick out the residual degrees of freedom (i.e., 
residualdf  that we call  and full reddf df

respectively) from the two source tables and calculate the number of restrictions to be 

tested, red fulls df df  . 

 Calculate the F statistic, 
( ) /

/

red full

full full

SS SS s
F

SS df


 , which, under 0H , is  ( , )fullF s df  

distributed. Then reject 0H if F is larger than the upper 1   percentile in the 

( , )fullF s df  distribution (corresponding to the level of significance,  ). 

 Or calculate the p-value, 
0
( )H obsP F F  (using e.g., the F.DIST function in Excel or 

one of the functions, “F” (the cdf) or “Ftail = 1-F”, in Stata). 

 

 [Example: The F-test reported (in red) is test for all the regression coefficients in front of 

explanatory variables, i.e., 0 1 2 3: 0H       against some ' 0j s  . This is a standard F-

test in all OLS-outputs. Non-rejection of this test indicates that there is no evidence in the data 

that the explanatory variables have any explanatory power at all– thus indicating that further 

analysis may be futile. ] 

 

The source tables of the two regression runs are all that we need for performing a F-test. 
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3 Some basic facts about the regression model and the source table  
 

First a summary of OLS    (See lecture note to Rice chap. 8, example 2 (p.10) for a matrix 

formulation): 

 

Model.     

(1) 0 1 1 1,2, ,i i k ik iY x x e i n          

where the { ; 1,2, ,  and 1,2, , }ijx i n j k   are considered fixed numbers and represent n 

observations of k explanatory variables, 1 2, , , kX X X (see justification in the appendix of the 

lecture note on prediction). For the error terms we assume, 1 2, , , ne e e  are iid and normally 

distributed, 2~ (0, )ie N   .  

 

The error terms (being non observable since the beta’s are unknown) can be written 

 

(2) 0 1 1 ( )i i i k ik i ie Y x x Y E Y           

 

The OLS estimators (equal to the mle estimators in this model) are determined as minimizing 

 

(3)  
2 2

0 1 1

1 1

( )
n n

i i k ik i

i i

Q Y x x e   
 

         

with respect to  0 1( , , , )k    . The solution to this minimization problem (which is 

always unique unless there is an exact linear relationship in the data between some of the X-

variables,) are the OLS estimators, 0 1
ˆ ˆ ˆ, , , k   , satisfying the 1k    so called  “normal 

equations”: 

 

(4) ˆ( ) 0, 0,1,2, ,
j

Q j k



 


  

We define the “predicted Y’s” and residuals as respectively 

 

0 1 1
ˆ ˆ ˆˆ ˆˆ,   and  , 1,2, ,i i k ik i i iY x x e Y Y i n          

 

The normal equations (4) can be expressed in terms of the residuals as (defining, for 

convenience, a constant term variable, 0 1ix  ),   

 

(5) 
1

ˆ 0  for  0,1, 2, ,
n

i ij

i

e x j k


   
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In particular, the first normal equation in (5) shows that 0

1 1

ˆ ˆ 0
n n

i i i

i i

e e x
 

   , and, therefore3 

that the mean of the Y’s must be equal to the mean of the predicted Y’s,  

 

(6)  ˆY Y .       (Notice  ˆ ˆ ˆ( )i i i ii i i
Y Y n Y e n Y n Y        ) 

 

We now introduce the relevant sums of squares (SS’s) which satisfy the same (fundamental) 

relationship (fact 1) as in the simple regression with one explanatory variable:    

 Define  

 Total sum of squares,   
2

1

n

tot i

i

SS Y Y


    

 Residual sum of squares,   
2

2

1 1

ˆˆˆ ( )
n n

res i i i

i i

SS e Y Y Q 
 

       

 Model sum of squares,     
2    (6) 2

mod el

1 1

ˆ ˆ ˆ
n n

i i

i i

SS Y Y Y Y
 

       

 

Writing ˆ ˆ
i i i iY Y Y Y Y Y     , squaring, and using a little bit of simple (matrix) OLS – 

algebra, we get the fundamental (and basis for the Source table)  

 

Fact 1:    
modeltot resSS SS SS    

 

or    
2

1

n

i

i

Y Y


 =  
2

1

ˆ ˆ
n

i

i

Y Y


 +  
2

1

ˆ
n

i i

i

Y Y


  

where    0 1 1
ˆ ˆ ˆˆ ˆˆ (explained),   and    (unexplained), 1,2, ,i i k ik i i iY x x e Y Y i n          

 

 Often 
modelSS  is interpreted as measuring the variation of the “explained part” ( ˆ

iY  ) of 

the response iY  , and 
resSS  as the variation of the “unexplained part” of iY . 

Introducing 2

model totR SS SS  we get the so called “coefficient of determination” 

interpreted as the percentage (i.e., 2100 R  ) of the total variation of Y “explained” by 

the k regressors, 1 2, , , kX X X , in the data.  

 

 It can also be shown that, defining R as the sample correlation between, ˆ and i iY Y  

(called the (sample) multiple correlation between Y and 1 2, , , kX X X ), then 2R  is 

exactly equal to the definition given. In the Stata output 2R is reported to the right of 

the Source table. R being a correlation coefficient implies that 2 1R  . 

                                                 
3 Whenever the regression function has a constant term, 

0
 , and only then. 
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To do inference we also need to know the distributional properties of the SS’s. First of all, 

they can be used to estimate the error variance, 2 , under various circumstances. Notice first 

(see section 6 below) that  
22 2

1~ (0, ) ~ (0,1) ~i i ie N e N e       (as shown in 

Rice, page 61, as an example, or in the supplementary lecture note on the mgf of the gamma 

distribution). Since a sum of independent chi-square variables is itself chi-square with degrees 

of freedom equal to the sum of degrees of freedom for each variable (recall also that the 

expected value of chi-square variable is equal to the degree of freedom), we have 

 

 2 2 2 2 2

2 2
1 1 1

1 1 1
~

n n n

i n i i

i i i

e E e n E e
n

 
   

   
      

   
     

Hence, if we could observe the ie ’s, we could use 2

1

1 n

i

i

e
n 

  as an unbiased estimator of 2 . 

The  ie ’s being non observable, we use the residuals, îe ’s, instead. The normal equations (5) 

show that the residuals must satisfy 1k   restrictions, 
1

ˆ 0  for  0,1, 2, ,
n

i ij

i

e x j k


  , so only 

1n k   residuals can vary freely. Hence the term “degree of freedom”,  being 

1resdf n k      for the residuals. 

 

Fact 2    If the regression function contains 1k   free parameters,  0 1( , , , )k    , then 

1  minus [no. of free parameters, 1,  in the regression function]resdf n k n k     . 

 

Now the matrix OLS algebra (details omitted) gives us fact 3 showing that 2

resSS   is chi-

square distributed with 1n k   degrees of freedom, 

 

Fact 3  2 2 2

12 2
1

1
ˆ ~

res

n
res

i n k df

i

SS
e  

 
 



    

 

 
2

2
1 ( )res res

res

res

SS SS
E n k df E

df




  
        

   
 

 

Hence, defining the mean sum of squared residuals as 
2 ( 1)res res res resMS SS df SS n k      , we have obtained an unbiased estimator of 2 ,   

 

(7) 
2 ˆ( )res res res resMS SS df Q df       

 

(Note in contrast that the mle estimator is 2ˆ
resSS n   (shown in the appendix).) 
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Fact 4  (i)  
model and  resSS SS  are independent rv’s. 

  (ii)  If all 
1 2, , , k    are 0, then  2 2 2

model model~ kSS E SS k      

         Otherwise, if some 0j  ,    2

modelE SS k   

 

 

All the information in facts 1,2,…,5 is summarized in the Source table4 constructed as 

follows, 

 

(8)   The Source table 

Source SS df MS=SS/df 

Model 
model

SS   
model

df k   
model

MS  

Residual 
res

SS   1
res

df n k     
res

MS  

Total 
2

( )
tot ii

SS Y Y    1n    
tot

MS  

  

The Source table for the full model (1) in the example - together with the diagnostic 

information to the right - became 

 

(9) The Source table for the full model (1) 
      Source |       SS       df       MS              Number of obs =      20 

-------------+------------------------------           F(  3,    16) =   68.92 

       Model |  5784808.74     3  1928269.58           Prob > F      =  0.0000 

    Residual |  447637.457    16   27977.341           R-squared     =  0.9282 

-------------+------------------------------           Adj R-squared =  0.9147 

       Total |   6232446.2    19  328023.484           Root MSE      =  167.26 

 

 According to this, the estimate of the error variance, 2 , is 27 977.484. The square 

root of this (167.26) is the estimate of   and is given as Root MSE to the right.  

 The F-test for the 0

baseH  (consisting of 3 restrictions) is at the right and has a p-value 

0.0000, indicating that the (3) explanatory variables have explanatory power, so it 

makes sense to continue the analysis. 

 R-squared is simply 
model totSS SS  and shows that 92.82% of the variation in the data of 

iY  is explained by the 3 variables in the model5 (all determined by our single X). 

                                                 
4 This source table represent a regression model with a constant term (

0
  ). If the regression function contains k 

X’s only without a constant term, the source table is slightly different. Then 
2 ( )

tot i pred resi
SS Y SS SS   , 

, ,  and 
res pred tot

dfdf n k k df n    . Otherwise, the same.  

5 I.e., in this case all 3 variables in the regression function (usually called “regressor” variables) are actually 

determined by a single X. This is ok, however,  as long as the three resulting (regressor) variables are not exactly 

linearly dependent.  If they had been exactly linearly dependent, the model becomes non identifiable and OLS 

brakes down (actually, there will then be infinitely many equivalent solutions to the minimization of Q, i.e., what 

Frisch called “multicollinearity”). 
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 Also the adjusted R-square6 is a diagnostic tool. If the difference between the two R-

squares is substantial, this is a sign that too many explanatory variables have been 

included in the model in relation to the number of observations (n). (In the extreme 

case, for example, that we include 1n   X’s in the model, we get all 

ˆ ˆ  all  0 0i i i resY Y e SS       and, therefore, 2 1R  . In this case the 

regression analysis collapses completely, i.e., there is no information at all in the data 

for such a model.) In the present example there is no danger of such a possibility since 

both values are quite close. 

 

 

4 The recipe for F-testing of regression coefficients 
 

The full Model is as in (1) 

     

(10) 0 1 1 1,2, ,i i k ik iY x x e i n          

where the { ; 1,2, ,  and 1,2, , }ijx i n j k   are considered fixed numbers and represent n 

observations of k explanatory variables, 1 2, , , kX X X (see justification in the appendix of the 

lecture note on prediction). For the error terms we assume, 1 2, , , ne e e  are iid and normally 

distributed, 2~ (0, )ie N   .  

The reduced Model 

We want to test a null hypothesis consisting of s (linear and independent) restrictions7 on 

0 1, , , k   . When the restrictions are linear, the model under 0H  can be expressed as a 

regression model (called the “reduced model”) with p regressor variables – some of which 

may be different from the X’s (see the exercise (II) in the no-seminar week 48 for an example) 

– and 1p   regression parameters, 0 1' ( , , , )p    ,  (with 0  a constant term if present), 

where p k .  

 

[For example:  Suppose the full model is 
0 1 1 2 2 3 3Y X X X e        , and we 

want to test 0 1 2:H     (call the common value  , say). Then the reduced model 

becomes,  0 1 2 3 3 0 1 2 3 3( )Y X X X e X X X e                . Then 

0 3 0 1 2' ( , , ) ( , , )        , and p = 2 and 1s  .  

                                                 

6 For the curious ones:  We have 
2 model

1
res

tot tot

SS SS
R

SS SS
   .  

  The formula for 
2

adj
R  is, 

2 2
1

1 1 (1 )
1

DEF

res res

adj

tot tot

SS df n
R R

SS df n k


    

 
  

7 A linear restriction on r parameters, 1 2, , , r   , has the general form, 0 1 1 2 2 0r ra a a a       , where 

0 1 2, , , , ra a a a  are known constants. Several restrictions are independent if no one of them can be derived by the 

others. 
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The full analysis is OLS –regression of 
1 2 3 on , ,Y X X X   (with 4res fulldf df n   ).  

The reduced analysis is achieved by OLS of 
1 2 3 on two variables, ( ) and Y X X X   

(with  3res reddf df n    )   ] 

 

Let ,full redSS SS  denote the residual sum of squares ( resSS  ) for the full model and the reduced 

model respectively and the corresponding degrees of freedom (in the case that a constant 

occurs in both the full and the reduced model – otherwise, see footnote 3),

- -1 and 1full reddf n k df n p     . The likelihood ratio principle tells us (see the appendix) 

that we should compare  and full redSS SS to test the reduced model against the full model. This 

is exactly what the F-test does.  

 

The  matrix OLS algebra (details omitted) gives us what we need for the F-test in fact 5: 

 

 

Fact 5 (i)  The rv’s fullSS  and red fullSS SS are independent.   

 (ii)   If 0H  (the reduced model) is true, then 
2( )red fullSS SS   is chi-square 

 distributed with degree of freedom (equal to the expected value) equal to 

 red fulls df df   (valid in general with or without constant terms in the two 

 models). 

 (iii) If 0H  is false,  then 
2( )red fullSS SS   tends to get larger values than what is 

 likely in the 2

s  distribution 

 

Hence,  ( )red fullSS SS s  is an unbiased estimator of 2  if 0H  is true, and, as can be proven, 

has expectation 2  if 0H is wrong. Since, in any case, 
2

fullSS   is chi-square with degree 

of freedom fulldf  , and, hence, 
2

full fullSS df   unbiased (and consistent),we get our F test 

statistic 

  

2

1

2

2

( ) / ( ) / ( )

/ / ( )

red full red full

full full full full full

SS SS s SS SS s Z s
F

SS df SS df Z df





 
    ,  

where 
1 2,Z Z  are independent and, under 0H ,  chi-square with s and fulldf degrees of freedom 

respectively. 

Then, according to the construction in section 2, F is F-distributed with red fulls df df   and 

fulldf  degrees of freedom if 0H  is true. If 0H  is wrong, the F tends to get larger, so we reject 

0H  if F is sufficiently large.  
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Note also that  
2

( ) /red fullSS SS s
F




 , where 2 is an unbiased and consistent estimator of 

2 , no matter if 0H  is true or false. 

 

In other words, the recipe of the F-test is as follows: 

 

 

(11) Recipe for the F-test of the reduced model against the full model 

 

 Run two regressions, one for the full model and one for the reduced. 

 Pick out the residual sums of squares (  and full redSS SS ) from the two source tables. 

 Pick out the residual degrees of freedom (  and full reddf df ) from the two source tables 

and calculate the number of restrictions to be tested, red fulls df df  . 

 Calculate the F statistic, 
( ) /

/

red full

full full

SS SS s
F

SS df


 , and reject 0H if F is larger than the 

upper 1   percentile in the ( , )fullF s df  distribution (corresponding to the level of 

significance,  ). 

 Or calculate the p-value, 
0
( )H obsP F F  (using e.g., the F.DIST function in Excel or a 

similar function in Stata). 

 

Example of testing structural break described in the introduction. 

 

Full model 

0 1 2 3i i i i i iY x d d x e          where   1 2, , , ~ne e e iid   with 2~ (0, )ie N   

 

 

 

 

Stata output full model 

 

. regr Y d dx x 

 
      Source |       SS       df       MS              Number of obs =      20 

-------------+------------------------------           F(  3,    16) =   68.92 

       Model |  5784808.74     3  1928269.58           Prob > F      =  0.0000 

    Residual |  447637.457    16   27977.341           R-squared     =  0.9282 

-------------+------------------------------           Adj R-squared =  0.9147 

       Total |   6232446.2    19  328023.484           Root MSE      =  167.26 

 

------------------------------------------------------------------------------ 

          M1 |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

           D |   1639.755   283.2312     5.79   0.000     1039.331    2240.178 

          DX |  -.2745789   .0572058    -4.80   0.000    -.3958499    -.153308 

          XM |   .2742643   .0459396     5.97   0.000     .1768768    .3716518 

       _cons |   86.25502   105.3841     0.82   0.425    -137.1493    309.6594 

------------------------------------------------------------------------------ 
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Reduced model ( 0H )  

 

0 1i i iY x e      where   1 2, , , ~ne e e iid   with 2~ (0, )ie N   

0 2 3: 0H       

 

 

Stata output reduced model 

 

. regr Y x 
 

 

      Source |       SS           df       MS      Number of obs   =        20 

-------------+----------------------------------   F(1, 18)        =     62.89 

       Model |   4845492.5         1   4845492.5   Prob > F        =    0.0000 

    Residual |   1386953.7        18  77052.9834   R-squared       =    0.7775 

-------------+----------------------------------   Adj R-squared   =    0.7651 

       Total |   6232446.2        19  328023.484   Root MSE        =    277.58 

 

------------------------------------------------------------------------------ 

           Y |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

           x |   .1748752   .0220523     7.93   0.000      .128545    .2212053 

       _cons |   331.2991   102.3147     3.24   0.005      116.344    546.2543 

------------------------------------------------------------------------------ 

 

 

The relevant quantities are 

 

447 637.457    16

1 386 953.7    18

full

red

full

red

S f

SS df

S d 

 


  

 

No. of restrictions under 0H : 2red fulls df df     

1 386 953.7 447( ) / ( 637.457) / 2
16.787...

447 637.457 /16/

red full

full full

SS SS s
F

SS df


 




 

~ (2,16)F F  under 0H . 

P-value (using F.Dist in Excel):  
0 0
( ) ( ) 0.0001177,   i.e.,1  6.78 07 0. 00H obs HP F F P F    ,  

so the evidence for a structural break as defined at 5000 is strong, i.e., the reduced model is 

rejected. 

 

 

5. Specification test of same variance in the two income groups  

The F-test in section 4 assumes constant error variance, 2 , in both groups. If this 

assumption is wrong, the F-test in section 4 is invalidated. It is therefore natural to ask if there 

is any evidence in the data for doubting the constant variance assumption. For this purpose we 
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can use another F test which often can be used to compare the variances in two independent 

groups. 

 

Let 2 2

0 1,   be the error term variances for the 0d   group and 1d   group respectively. 

We want to test 
2

2 2 0
0 0 1 2

1

: 1H


 


     against  
2

0
1 2

1

: 1H



  

The F test is well suited for this: 

 Run two regressions, one for each group. 

 Pick out the two resMS , called 0 1 and MS MS  respectively, from the two runs and form 

the F statistic, 0 0 0

1 1 1

/

/

MS SS df
F

MS SS df
   , where 0 1,df df  are the residual degrees of 

freedom in the two groups. Note that 0 1 and MS MS  must be independent since they 

come from two independent groups. 

 Since 
22 2

0 0 01 1

2 2 2

0 1 1 1 0

/ ( )

/ ( )

SS df
F V

SS df

 

  
    , where 0 1~ ( , )V F df df , it follows that 

0 1~ ( , )F F df df  if 0H  is true.  

 The problem is two-sided, so we reject 0H if 1 2 or F c F c  , where the critical 

values, 1 2,c c  for level of significance  , are determined by 

0 01 2( ) 2  and ( ) 2H HP F c P F c     . 

 Or calculate the p-value:   
0 0

2 the smallest of P ( ) and P ( )H obs H obsF F F F     . 

 

 

 

 

Stata output for the example 

 
Group D = 0 

 

      Source |       SS       df       MS              Number of obs =      14 

-------------+------------------------------           F(  1,    12) =   40.56 

       Model |  997175.494     1  997175.494           Prob > F      =  0.0000 

    Residual |  295016.506    12  24584.7088           R-squared     =  0.7717 

-------------+------------------------------           Adj R-squared =  0.7527 

       Total |     1292192    13  99399.3846           Root MSE      =   156.8 

 

------------------------------------------------------------------------------ 

          M1 |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

          XM |   .2742643   .0430642     6.37   0.000     .1804356    .3680931 

       _cons |   86.25502   98.78806     0.87   0.400    -128.9857    301.4957 

------------------------------------------------------------------------------ 

 

----------------------------------------------------------------------------------------------

---- 

Group D = 1 

 

      Source |       SS       df       MS              Number of obs =       6 

-------------+------------------------------           F(  1,     4) =    0.00 

       Model |  2.38293417     1  2.38293417           Prob > F      =  0.9941 

    Residual |   152620.95     4  38155.2376           R-squared     =  0.0000 
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-------------+------------------------------           Adj R-squared = -0.2500 

       Total |  152623.333     5  30524.6667           Root MSE      =  195.33 

 

------------------------------------------------------------------------------ 

          M1 |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

          XM |  -.0003146   .0398097    -0.01   0.994     -.110844    .1102148 

       _cons |    1726.01   307.0134     5.62   0.005     873.6039    2578.415 

 

Test:  0

1

~ (12, 4)
MS

F F
MS

   under 0H . 
0( 1 ~ (4,12) under )F F H   

The critical values at the 5% level from table 5 back in Rice : 

0 0

0 0 0

2 2 2

1

1 1

1

1

( ) 0.025 ( ) 0.975 8.75

1 1 1 1
( ) 0.025 0.025 0.975

1 1
4.12 0.24

4.12

H H

H H H

P F c P F c c

P F c P P
F c F c

c
c

      

   
          

   

    

   

so we reject 0H  if 0.24  or  8.75F F   . 

Observed: 0

1

24584.7088 

38155.2
0.64

376 
obs

MS
F

MS
    

Conclusion:  Don’t reject 0H . 

In other words: Our (full) model in section 4 passed the specification test, which increases its 

credibility. 

 

6 Some useful facts about  chi-square-  and T-distributions 

(i)    2 1
2 2

( , )r
r    distributions. 

(ii) 2~ ( ) , var( ) 2rZ E Z r Z r      

(iii) 2 2

1~ (0,1) ~X N Z X     (see, e.g., Rice page 61 (example C)) 

(iv) 
1 2, , , kZ Z Z  independent and 

2 2

1 2

1

~ , ~ ,   where  
j

k

j r j r k

j

Z Z Z r r r r 


        

(v) Construction of T:  

2If ,  are independent, ~ (0,1),  and  ~ ,  then ~r r

X
X Z X N Z T t

Z r
   (i.e., t-

distributed with r degrees of freedom (see Rice Chap. 6 (optional reading)). 

(vi) From (iii) and section 2 above, we conclude that, if ~ rT t , then 2 ~ (1, )F T F r . 

(vii) Testing an individual coefficient, 0 : 0jH     against 1 : 0jH   , we would use a 

t-test with 1r n k    degrees of freedom and test-statistic 1

ˆ
~

ˆ( )

j

n k

j

T t
SE




   
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under 0 .H  This test is equivalent with an (1, 1)F n k   - test, since

2

0~ (1, 1)  under  .F T F n k H     

 

 

 

7 Appendix – The F-test as a likelihood ratio test (optional reading) 
 

Consider the model in (10) 

 

(12) 0 1 1( ) 1,2, ,i i i i k ik iY E Y e x x e i n          , where 1 2, , , ne e e  are iid and 

2~ (0, )ie N  .   This implies that 1 2, , , nY Y Y  are independent and 

2~ ( ( ), )  for  1,2, ,i iY N E Y i n  . 

 

The likelihood is  (writing 0 1( , , , )k     ) 

2

2 2

1 1
( ( )) ( )

2 2
1 2 2 2

1 1 1 1
( , ) ( , , , ; , )

(2 ) (2 )

i ii
y E Y Q

n n n n n
L f y y y e e


    

   

  
     

 

Since ( ) xh x e  is a decreasing function, then, whatever the value of  , the maximum of L 

over   is obtained by minimizing ( )Q  , i.e., when   is equal to the OLS ̂ . Hence, the 

mle ̂  is equal to the OLS estimator. We then find the mle of 2  by maximizing 

2

1ˆ ˆln ( , ) ln(2 ) ln ( )
2 2

n
L n Q    


     with respect to  . 

3

2ˆ ˆln ( , ) ( ) 0
2

n
L Q  

  


   


  gives the mle 2 1 1ˆˆ ( ) resQ SS

n n
   . 

 

Substituting this in the likelihood, we get the maximum value 

 

(13) 

   

ˆ 2( )
ˆ2 ( ) 2 2

2 2 2

2 2

1 1 1 1 1ˆ ˆ( , )
ˆ(2 ) (2 ) (2 )ˆ ˆ( ) ( )

n
n n nQ

Q

n nn n n n

n
L e e e

Q n Q


 

   
 

  

    

Now let   denote the parameter  set, ( ,  ), under the full model (12), and   the parameter 

set, ( ,  ), under the reduced model in section 4. Let  and L L  be the maximum likelihoods 

over  and   respectively. The likelihood ratio (LR) then becomes 
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 

 

2
2

2

2 22

2
2

2

2

1

(2 ) ˆˆ( ) ( )

ˆ( )
1

(2 ) ˆ( )

n
n

n nnn

full

n
n red

nn

n
e

SSQL Q

L Q SS
n

e

Q




 








 

   
        

  
  

 

The LR test tells us to reject the reduced model 0( )H  if 2ln ln red

full

SS
W n

SS

 
      

 

 is 

sufficiently large, which is the same as saying that 0H should be rejected if red

full

SS

SS
 is 

sufficiently large (since the ln-function is increasing), or if 1
red fullred

full full

SS SSSS

SS SS


   is 

sufficiently large. This is equivalent to rejecting 0H  if the F statistic, 

1 red full

full

SS SSn k
F

s SS

 
   is sufficiently large. The distribution of F is known exactly (as a 

F-distribution) under 0H - no matter sample size - in contrast to the general LR test which is 

only approximately a Chi-square test (with degree of freedom s) for large samples. 


