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HG 

Revised Sept. 2019 

Supplement to lecture 9   (Monday 16 Sept) 
 

On the bivariate normal model  

Example:    daughter’s height (Y) vs. mother’s height (X). 
 

Data collected on Econ 2130 lectures 2010-2012.  

 

The data can be downloaded as an Excel file under Econ2130 at http://folk.uio.no/haraldg/ . 

 

n =125 observation pairs:   1 1 2 2( , ),( , ), ,( , )  of the random pair  ( , )n nx y x y x y X Y  

Figure 1 Scatter plot 
 

 
Data summary: 
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 Daughters: ˆ167.6, 5.5938y yy s    
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Population:    all mother – daughter pairs in Norway (with daughters at least 18 years (say)) 

http://folk.uio.no/haraldg/
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Model:           The bivariate normal distribution   ( population distribution) 
 

If ( , ) ~ ( , , , , )x y x yX Y N             (bivariate normally distributed with 5 parameters 

(population quantities)

( ), ( ), ( ), ( ), corre( , )x y x yE X E Y SD X SD Y X Y         ), 

 

the joint pdf is (see Rice p. 81) 
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Fitting to data.   It can be shown that (practically) the best fitting (in the maximum likelihood 

sense) estimate of this pdf is obtained by substituting ( , , , , )x yx y s s r  for the parameters 

( , , , , )x y x y     . The result is shown in the following contour plot produced by Maple1: 

 

Note that maximum of the estimated pdf is obtained in the point  ( , ) (166.9, 167.6)x y  , 

which is the sample estimate of the population means ( , )x y  . 

Figure 2 Contour plot of the best fitting joint normal distribution 
 

 

                                                 
1 It appears that Stata cannot produce contour  plots like this (as far as I know) 
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Important properties of the bivariate normal distribution 

Property 1  The distribution is symmetric in all directions with  
   highest concentration of observations at the center. 
 

 The contours (i.e., where the pdf is constant) are ellipses. 

 If the scatter plot of observations of (X,Y) does not show symmetry of this 

kind, the bivariate normal model is not realistic. 

 

 

Property 2  If ( , ) ~  bivariate (joint) normal ( ( , , , , ))x y x yX Y N      , the 

marginal distributions are both normal, 
2 2~ ( , ),   and  ~ ( , )x x y yX N Y N    . 

 

 For example,  
2
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( ) ( , ) see Rice p.82 (optional reading) 
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Note.   The other way does not hold! Even if X,Y are both normally distributed 

marginally, the joint distribution is not necessarily bivariate normal (see e.g., 

Rice p. 84). 

 

Property 3  If (X,Y) is bivariate normal and the correlation is zero 
   ( 0)  ,  then X and Y are (stochastically) independent! 
 

 Proof.  If 0  , the general expression (1) reduces to 
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 which implies that X and Y are independent.  (End of proof) 

 

 Note.   This is a special feature of the joint normal distribution. In general, zero 

correlation does not imply that X and Y are independent!  

 So, zero correlation can, in general, be looked upon as a weaker form of lack of 

dependence between X and Y than stochastic independence (which is the strongest 

form). 

 

Property  4  If (X,Y) is bivariate normal, both regressions (Y w.r.t X and 
X w.r.t. Y) are automatically linear and homoscedastic. In 
addition the two conditional distributions are both normal. 
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Having the joint pdf, ( , )f x y , and the marginal one, ( )Xf x , we can calculate the conditional 

pdf for |Y x : 

 

(2) 2
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which we recognize as a normal pdf with expectation ( | ) ( )
y

y x

x

E Y x x


 


   , and 

variance  2 2var( | ) (1 )yY x    . 

 

In particular, the conditional distribution of  |Y X x  is normal  ( | ), var( | )N E Y x Y x , 

with regression function  (cf. Rice p. 148) 

 

 ( ) ( | ) ( )
y

y x

x

x E Y x x 


 


     ,    (i.e., a linear function of x)  

and variance function 

 

 
2 2 2

var( | )( ) (1 )yY xx       (i.e., constant) 

 

Important result. 

Hence, if we can assume reasonably that the joint distribution of X and Y is bivariate normal, 

it follows automatically (without extra assumptions) that the regression of Y w.r.t. X is linear 

and homoscedastic. 

 

Substituting the estimates we have for ( , , , , )x y x y     , in 
2( )  and  ( )x x  , we get the 

estimated regression (which, in fact, are the same as the OLS estimates from the basic course)  

 

 
5.5938

167.6 (0.36) ( 166.9)
5.823

ˆ( ) 109.86 (0. 4
2

3 58)x x x       

 
22 22

ˆ (5.5938) (1( ) (5.2187(0.36) ))x      

  

and the estimated conditional distribution is normal: 

  2( | ) ~ 109.86 (0.3458) , (5.2187)       (estimated)Y X x N x   

 

 

 

 



5 

 

Figure 3 Contour plot of the best fitting joint normal distribution and the 
implied (OLS estimated) regression function. 

 

 
 

Historical note on the term “regression”. 

The term was used by geneticists in the beginning of last century. They observed a 

phenomenon that when a parent has height (say) away from the average height in the 

population, the offspring tends to have height closer to the average height (i.e., a regression 

towards the mean). This tendency was confirmed by regression analysis.  

 

Illustration:  Our estimated population mean (for mothers) is ˆ 166.9x x   . Consider a 

mother with height 172cm  (5 cm above population mean). The mean height for daughters of 

such mothers is estimated as 

 

 ˆ(172) 109.86 (0.3458) 172 169.4       (i.e. 2.5 cm from the population 

mean) 

 

A mother being 162cm gives  

 

 ˆ(162) 109.86 (0.3458) 162 165.9       (i.e. 1.9 cm from the population 

mean) 
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Example of zero correlation when X and Y are dependent. 
 

Let ,X U  be independent rv’s where ~ (0,1)  and  ~ uniform[ 0.5, 0.5]X N U  . 

Let 2Y X U    

100 simulated observations of ( , )X Y , generated and plotted by Stata are  

 
. set obs 100 

obs was 0, now 100 

 

. gen u=runiform()-.5  // runiform() generates uniform over (0, 1) 

 

. gen x=rnormal()    // rnormal() generates N(0,1) 

observations 

 

. gen y=x^2+u 

 

. scatter y x 

 

 
 

The plot shows strong dependence between X and Y. 

 

Regression of Y w.r.t. X: 

 

    
 fixed

2 2 2( ) ( | ) | | ( | )
x

x E Y x E X U X x E x U X x x E U x            

 

but 
1

,   independent ( | ) ( ) 0  and  var( | ) var( )
12

U X E U x E U U x U       

(remember that independence ( | ) ( )Uf u x f u   ).   Hence the regression function becomes 

 

 2 2( ) ( | ) ( | )x E Y x x E U x x       
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Scatterplot with regression function 

Stata command:      twoway (scatter y x) (function y=x^2, range( -3 2)) 

 
 

 fixed
2 2 1

var( | ) var( | ) var( | ) var( | ) var( )
12

x

Y x X U X x x U X x U X x U            

showing that the variance function is constant,  2( ) var( | ) 1 12x Y x   . 

So the relation is non-linear (for the regression function) and homoscedastic. 

 

 

However, the correlation between X and Y is zero (in spite of strong dependence)! 

Proof: 

The correlation coefficient is 
def cov( , )

( , )
( ) ( )

X Y
X Y

SD X SD Y
  


, where the covariance becomes 

  
def

cov( , ) ( ( ))( ( )) ( ) ( ) ( ) ( )X Y E X E X Y E Y E XY E X E Y E XY        

since ~ (0,1) ( ) 0X N E X    

Now 

 
,  independent

3 3 3 3( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
X U

E XY E X XU E X E XU E X E X E U E X         

We have 

 

2

3 3 2
1

( ) ( )
2

x

E X x e dx g x dx


 


 

   , where we have called the integrand ( )g x . 

 

 

We see that ( )g x  is symmetric about the origin  (i.e., ( ) ( )  for all .g x g x x     
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implying that the area A B  , and therefore, the total area ( ) 0g x dx A B





   . 

Hence,  3cov( , ) ( ) 0X Y E X  , and, therefore, also the correlation = 0.  (End of proof). 

 

 

 

 

 [Proof that  ( ) ( )( )E XU EX EU  when X and U are independent:  

 Suppose ( , )X U  has joint pdf ( , )f x u  and marginal pdfs ( ) and ( )X Uf x f u  . 

Independence implies  ( , ) ( ) ( )X Uf x u f x f u .  

 

 To find ( )E XU , we need the rule given in Theorem B (Rice p. 123), that implies that, 

if ( , )h x u  is an arbitrary function, then 

 

    ( , ) ( , ) ( , )E h X U h x u f x u dxdu

 

 

      (whenever the integral exists) 

  

 Hence

 

( )  constant

( ) ( , ) ( ) ( ) ( ) ( )

            ( ) ( ) ( ) ( ) ( ) ( )

X U U X

E X

U U

E XU xu f x u dxdu xu f x f u dx du uf u x f x dx du

uf u E X du E X uf u du E X E U

     

     

 

 

   
      

   

  

     

 
(End of proof)       ] 


