HG Revised Sept. 2019

Supplement to lecture 9 (Monday 16 Sept)

On the bivariate normal model

Example: daughter's height (Y) vs. mother's height (X).

Data collected on Econ 2130 lectures 2010-2012.

The data can be downloaded as an Excel file under Econ2130 at http://folk.uio.no/haraldg/ .

n =125 observation pairs: $(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)$ of the random pair (X, Y)

Figure 1 Scatter plot

Data summary:

Mothers:

$$\overline{x} = 166.9, \qquad \hat{\sigma}_x = s_x = 5.8232 \qquad \left[\overline{x} = \frac{1}{n} \sum_{i=1}^n x_i, \quad s_x^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i - \overline{x})^2 - \text{sample variance} \right]$$
Daughters: $\overline{y} = 167.6, \qquad \hat{\sigma}_y = s_y = 5.5938$
Correlation:
 $r = \hat{\rho} = \frac{s_{xy}}{(s_x s_y)} = 0.36 \qquad \left[\frac{s_{xy}}{1-1} \sum_{i=1}^n (x_i - \overline{x})(y_i - \overline{y}) - \text{sample covariance} \right]$

Population: all mother – daughter pairs in Norway (with daughters at least 18 years (say))

Model: The bivariate normal distribution (population distribution)

If $(X,Y) \sim N(\mu_x, \mu_y, \sigma_x, \sigma_y, \rho)$ (bivariate normally distributed with 5 parameters (population quantities) $\mu_x = E(X), \quad \mu_y = E(Y), \quad \sigma_x = SD(X), \quad \sigma_y = SD(Y), \quad \rho = \text{corre}(X,Y)),$

the joint pdf is (see Rice p. 81)

(1)
$$f(x,y) = \frac{1}{2\pi\sigma_x\sigma_y\sqrt{1-\rho^2}} \exp\left(-\frac{1}{2(1-\rho^2)}\left[\frac{(x-\mu_x)^2}{\sigma_x^2} + \frac{(y-\mu_y)^2}{\sigma_y^2} - 2\rho\frac{(x-\mu_x)(y-\mu_y)}{\sigma_x\sigma_y}\right]\right)$$

for $-\infty < x < \infty$ and $-\infty < y < \infty$.

Fitting to data. It can be shown that (practically) the best fitting (in the maximum likelihood sense) estimate of this pdf is obtained by substituting $(\bar{x}, \bar{y}, s_x, s_y, r)$ for the parameters $(\mu_x, \mu_y, \sigma_x, \sigma_y, \rho)$. The result is shown in the following contour plot produced by Maple¹:

Note that maximum of the estimated pdf is obtained in the point $(\bar{x}, \bar{y}) = (166.9, 167.6)$, which is the sample estimate of the population means (μ_x, μ_y) .

Figure 2 Contour plot of the best fitting joint normal distribution

¹ It appears that Stata cannot produce contour plots like this (as far as I know)

Important properties of the bivariate normal distribution

Property 1 The distribution is symmetric in all directions with highest concentration of observations at the center.

- The contours (i.e., where the pdf is constant) are ellipses.
- If the scatter plot of observations of (X, Y) does not show symmetry of this kind, the bivariate normal model is not realistic.

Property 2 If $(X,Y) \sim$ bivariate (joint) normal $(N(\mu_x, \mu_y, \sigma_x, \sigma_y, \rho))$, the marginal distributions are both normal, $X \sim N(\mu_x, \sigma_x^2)$, and $Y \sim N(\mu_y, \sigma_y^2)$.

For example,

$$f_X(x) = \int_{-\infty}^{\infty} f(x, y) dy = \dots \text{ see Rice p.82 (optional reading)} \quad \dots = \frac{1}{\sqrt{2\pi\sigma_x}} e^{-\frac{1}{2} \left(\frac{x-\mu_x}{\sigma_x}\right)^2}$$
$$f_Y(y) = \int_{-\infty}^{\infty} f(x, y) dx = \dots \text{ similarly } \dots = \frac{1}{\sqrt{2\pi\sigma_y}} e^{-\frac{1}{2} \left(\frac{y-\mu_y}{\sigma_y}\right)^2}$$

Note. The other way does not hold! Even if X, Y are both normally distributed marginally, the joint distribution is not necessarily bivariate normal (see e.g., Rice p. 84).

Property 3 If (X,Y) is bivariate normal and the correlation is zero $(\rho = 0)$, then X and Y are (stochastically) independent!

Proof. If $\rho = 0$, the general expression (1) reduces to

$$f(x, y) = \frac{1}{2\pi\sigma_x \sigma_y} \exp\left(-\frac{1}{2}\left[\frac{(x-\mu_x)^2}{\sigma_x^2} + \frac{(y-\mu_y)^2}{\sigma_y^2}\right]\right) = f_X(x)f_Y(y)$$

which implies that X and Y are independent. (End of proof)

Note. This is a special feature of the joint normal distribution. In general, zero correlation *does not* imply that *X* and *Y* are independent! So, zero correlation can, in general, be looked upon as a weaker form of lack of dependence between *X* and *Y* than stochastic independence (which is the strongest form).

Property 4 If (*X*,*Y*) is bivariate normal, both regressions (Y w.r.t X and X w.r.t. Y) are automatically linear and homoscedastic. In addition the two conditional distributions are both normal.

Having the joint pdf, f(x, y), and the marginal one, $f_x(x)$, we can calculate the conditional pdf for Y | x:

(2)

$$f(y \mid x) = \frac{f(x, y)}{f_x(x)} = \dots \text{ messy algebra (can be skipped)} \dots =$$

$$= \frac{1}{\sqrt{2\pi}\sigma_y \sqrt{1-\rho^2}} e^{-\frac{1}{2\sigma_y^2(1-\rho^2)} \left[y - \mu_y - \rho \frac{\sigma_y}{\sigma_x}(x - \mu_x)\right]^2}$$

which we recognize as a normal pdf with expectation $E(Y | x) = \mu_y + \rho \frac{\sigma_y}{\sigma_x} (x - \mu_x)$, and variance $\operatorname{var}(Y | x) = \sigma_y^2 (1 - \rho^2)$.

In particular, the conditional distribution of Y | X = x is normal N(E(Y | x), var(Y | x)), with regression function (cf. Rice p. 148)

$$\mu(x) = E(Y \mid x) = \mu_y + \rho \frac{\sigma_y}{\sigma_x} (x - \mu_x) , \qquad (i.e., a \text{ linear function of } x)$$

and variance function

$$\sigma^{2}(x) = \operatorname{var}(Y \mid x) = \sigma_{y}^{2}(1 - \rho^{2}) \qquad (i.e., \text{ constant})$$

Important result.

Hence, if we can assume reasonably that the joint distribution of X and Y is bivariate normal, it follows automatically (without extra assumptions) that the regression of Y w.r.t. X is linear and homoscedastic.

Substituting the estimates we have for $(\mu_x, \mu_y, \sigma_x, \sigma_y, \rho)$, in $\mu(x)$ and $\sigma^2(x)$, we get the estimated regression (which, in fact, are the same as the OLS estimates from the basic course)

$$\hat{\mu}(x) = 167.6 + (0.36) \frac{5.5938}{5.8232} (x - 166.9) = 109.86 + (0.3458)x$$
$$\hat{\sigma}^2(x) = (5.5938)^2 (1 - (0.36)^2) = (5.2187)^2$$

and the estimated conditional distribution is normal:

 $(Y | X = x) \sim N(109.86 + (0.3458)x, (5.2187)^2)$ (estimated)

Historical note on the term "regression".

The term was used by geneticists in the beginning of last century. They observed a phenomenon that when a parent has height (say) away from the average height in the population, the offspring tends to have height closer to the average height (i.e., a regression towards the mean). This tendency was confirmed by regression analysis.

Illustration: Our estimated population mean (for mothers) is $\hat{\mu}_x = \overline{x} = 166.9$. Consider a mother with height 172cm (5 cm above population mean). The mean height for daughters of such mothers is estimated as

 $\hat{\mu}(172) = 109.86 + (0.3458) \cdot 172 = 169.4$ (i.e. 2.5 cm from the population mean)

A mother being 162cm gives

 $\hat{\mu}(162) = 109.86 + (0.3458) \cdot 162 = 165.9$ (i.e. 1.9 cm from the population mean)

Example of zero correlation when X and Y are dependent.

Let *X*, *U* be independent rv's where $X \sim N(0,1)$ and $U \sim uniform[-0.5, 0.5]$. Let $Y = X^2 + U$ 100 simulated observations of (X, Y), generated and plotted by Stata are

```
. set obs 100
obs was 0, now 100
. gen u=runiform()-.5 // runiform() generates uniform over (0, 1)
. gen x=rnormal() // rnormal() generates N(0,1)
observations
```

```
. gen y=x^2+u
```

. scatter y \boldsymbol{x}

The plot shows strong dependence between *X* and *Y*.

Regression of Y w.r.t. *X*:

$$\mu(x) = E(Y \mid x) = E\left(X^{2} + U \mid X = x\right) = E\left(x^{2} + U \mid X = x\right)^{x \text{ fixed}} = x^{2} + E(U \mid x)$$

but U, X independent $\Rightarrow E(U | x) = E(U) = 0$ and $var(U | x) = var(U) = \frac{1}{12}$ (remember that independence $\Rightarrow f(u | x) = f_U(u)$). Hence the regression function becomes

$$\mu(x) = E(Y \mid x) = x^{2} + E(U \mid x) = x^{2}$$

Scatterplot with regression function

$$\operatorname{var}(Y \mid x) = \operatorname{var}(X^{2} + U \mid X = x) = \operatorname{var}(x^{2} + U \mid X = x)^{x \text{ fixed}} \operatorname{var}(U \mid X = x) = \operatorname{var}(U) = \frac{1}{12}$$

showing that the variance function is constant, $\sigma^2(x) = \operatorname{var}(Y \mid x) = 1/12$. So the relation is non-linear (for the regression function) and homoscedastic.

However, the correlation between *X* and *Y* is zero (in spite of strong dependence)! Proof:

The correlation coefficient is $\rho = \rho(X, Y) \stackrel{\text{def}}{=} \frac{\operatorname{cov}(X, Y)}{SD(X) \cdot SD(Y)}$, where the covariance becomes $\operatorname{cov}(X, Y) \stackrel{\text{def}}{=} E[(X - E(X))(Y - E(Y))] = E(XY) - E(X)E(Y) = E(XY)$

 $\operatorname{cov}(X,Y) = E\left[(X - E(X))(Y - E(Y))\right] = E(XY) - E(X)$ since $X \sim N(0,1) \implies E(X) = 0$ Now

$$E(XY) = E(X^{3} + XU) = E(X^{3}) + E(XU) = E(X^{3}) + E(XU) = E(X^{3}) + E(X)E(U) = E(X^{3})$$

We have

$$E(X^3) = \int_{-\infty}^{\infty} x^3 \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} dx = \int_{-\infty}^{\infty} g(x) dx$$
, where we have called the integrand $g(x)$.

We see that g(x) is symmetric about the origin (i.e., g(-x) = -g(x) for all x.

7

implying that the area A = -B, and therefore, the total area $\int_{-\infty}^{\infty} g(x) dx = A + B = 0$. Hence, $cov(X,Y) = E(X^3) = 0$, and, therefore, also the correlation = 0. (End of proof).

[**Proof that** E(XU) = (EX)(EU) when X and U are independent: Suppose (X,U) has joint pdf f(x,u) and marginal pdfs $f_X(x)$ and $f_U(u)$. Independence implies $f(x,u) = f_X(x)f_U(u)$.

To find E(XU), we need the rule given in **Theorem B** (Rice p. 123), that implies that, if h(x, u) is an arbitrary function, then

$$E[h(X,U)] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} h(x,u) f(x,u) dx du \quad \text{(whenever the integral exists)}$$

Hence

$$E(XU) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} xu \ f(x,u) dx du = \int_{-\infty}^{\infty} \left[\int_{-\infty}^{\infty} xu \ f_X(x) f_U(u) dx \right] du = \int_{-\infty}^{\infty} u f_U(u) \left[\int_{-\infty}^{\infty} x \ f_X(x) dx \right] du$$
$$= \int_{-\infty}^{\infty} u f_U(u) E(X) du \overset{E(X) \text{ constant}}{=} E(X) \int_{-\infty}^{\infty} u f_U(u) du = E(X) E(U)$$
(End of proof)