Seminar 1 - OLS

- 1. Which of the following can cause an OLS estimator to be biased? Explain.
 - (a) Heteroskedasticity
 - (b) Omitting an important variable
 - (c) A sample correlation of .95 between two regressors included in the model
- 2. In the models below, show that $\hat{\beta}$ is an unbiased estimator of β . Be explicit about the key assumptions.
 - (a) using scalar notation: $y_i = \beta_0 + \beta_1 x_i + \epsilon_i$
 - (b) using vector notation: $y_i = \mathbf{x}_i' \boldsymbol{\beta} + \epsilon_i$
 - (c) using matrix notation: $\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \epsilon$
- 3. Say that the variance of ϵ does not depend on \mathbf{x} , i.e. $\operatorname{var}(\epsilon|\mathbf{x}) = \sigma^2$. Show that $\operatorname{var}(\hat{\boldsymbol{\beta}}|\mathbf{X}) = \sigma^2(\mathbf{X}'\mathbf{X})^{-1}$.
- 4. Derive var $(\hat{\beta}_1|\mathbf{x})$ in 2(a), assuming var $(\epsilon_i|x_i) = \sigma_i^2$
- 5. Assume $y_i = \beta_0 + \beta_1 x_{1i} + \beta_2 x_{2i} + \epsilon_i$. Assume that $E(\epsilon_i | x_{2i}) \neq 0$. Can $\hat{\beta}_1$ still be an unbiased estimator of β_1 ?
- 6. Consider the regression output below, where the log of hourly wages (lnwage) is regressed on years of schooling (eduy) and age.
 - (a) Interpret the coefficient on -eduy- in the first regression.
 - (b) What is the wage of people with zero years of schooling? And with 10 years of schooling?
 - (c) Calculate the 90% confidence interval of the coefficient on -eduy-
 - (d) What is the interpretation of the R-squared?

The second regression adds -age- as a regressor.

- (e) Calculate the F-statistic for H_0 : $\beta_{age} = 0$ using i) the sum of squares from the regression output, ii) the R-squares. Compare your results to what you get using the t-statistic in the second regression.
- (f) What is the correlation between -age- and -eduy-?

Source	SS	df	MS		Number of obs F(1, 31235)	
Model	633.04524	1 6	33.04524		Prob > F	
Residual	4395.32675	31235 .1	40718001		R-squared Adj R-squared	
Total	5028.37199	31236 .1	60980023		Root MSE	
lnwage					[95% Conf.	
	.0528497				.0513053	
_cons	1.602484	.0097426	164.48	0.000	1.583388	1.62158
		df			Number of obs	
					F(2, 31234)	
Model	1085.5649	2 54	2.782451		Prob > F	
	3942.80709				R-squared	
					Adj R-squared	
Total	5028.37199	31236 .1	60980023		Root MSE	= .35529
•	Coef.				[95% Conf.	Interval]
	.0629493				.0614496	.0644489
	.0145086	.0002423	59.87	0.000	.0140336	.0149836
age					.9235556	.9794582
age _cons	.9515069	.0142606	66.72	0.000	.9235556	
		.0142606	66.72	0.000	.9235556	
_cons						
_cons m lnw eduy Variable	age Obs	Mean	Std. Do	ev.		ax
_cons m lnw eduy Variable	age Obs	Mean 2.240249	Std. Do	ev. 3275	Min M.	ax

Recommended exercises from Wooldridge

- W4.1 a-c interpreting non-linear LHS, delta method.
- $\bullet~$ W4.6 endogeneity of predetermined variable
- W4.7 endogeneity in regression
- \bullet W4.8a-c average partial effect