Introduction to Stata - Session 1

Tarjei Havnes

¹ESOP and Department of Economics University of Oslo

> ²Research department Statistics Norway

ECON 4136, UiO, 2012

Preparation

Before we start:

- Create the folder statacourse in your home directory (e.g. in your Documents folder)
- Ownload all .dta-files from the course homepage
 - http://www.uio.no/studier/emner/sv/oekonomi/ECON4136/h12/
- Save the file to the folder statacourse
- Go to kiosk.uio.no (Internet Explorer!) and log on using your UIO user name
- Savigate to Analyse (english: Analysis)

Open StatalC 11

Aims

You should know

- The STATA interface (command line, results window, variables, review)
- Reading data into STATA
- Using help and some basic commands
- We will review some of these as we go along

Aims

You should know

- The STATA interface (command line, results window, variables, review)
- Reading data into STATA
- Using help and some basic commands
- We will review some of these as we go along

You should learn

- Using do-files and logging your session
- Combining data sets (merge, append)
- Using panel data (reshape, xt-commands)
- Running regressions (regress, logit, probit)
- Using and reporting estimation results (estimates, esttab, test)
- Using macros and loops (local, global, forvalues, foreach, while)

Challenges

- Wide difference in what you know and what you like
- You need to spend some time on this to get comfortable
- Please try not to clam up: ask a classmate, then me.

Let me know if things are too fast (or too slow).

Outline

- 2 The basics of Stata
- 3 Data in memory and subscripting
 - 4 Stata workflow
- 5 Preparing your data

Tasks we want to perform

Data management

- create a new data set
- merge different data sets

- E

Tasks we want to perform

Data management

- create a new data set
- merge different data sets

2 Data manipulation

- create new variables from existing
- sort observations
- change order of variables

Tasks we want to perform

Data management

- create a new data set
- merge different data sets

2 Data manipulation

- create new variables from existing
- sort observations
- change order of variables

Oata analysis

- graphs, tables, ...
- summarize separately: mean, count, variation, ...
- summarize jointly: correlations, regressions, inference, ...

Excel allows you to do

- hands-on data management and manipulation
- many types of analysis (even regression)

Excel allows you to do

- hands-on data management and manipulation
- many types of analysis (even regression)

But it is

- terribly cumbersome in practice
 - especially when no. of variables or observations is large
- very difficult to check formulas = very easy to make mistakes
- impossible to backtrack data manipulation

Excel allows you to do

- hands-on data management and manipulation
- many types of analysis (even regression)

But it is

- terribly cumbersome in practice
 - especially when no. of variables or observations is large
- very difficult to check formulas = very easy to make mistakes
- impossible to backtrack data manipulation

Excel/spreadsheet programs

- are forbidden for analysis and data manipulation
- may be useful for presenting data, inputting data and (rarely) graphing/tabulating

A major advantage is that Stata lets you

- log everything you do
- save the actual steps you have performed separately to run again later
 - potentially after changing (correcting) some steps

Why STATA, exactly

STATA is probably the most common in economics and the social sciences

- Efficient in run time
- Efficient in programming time
- Lots (and lots) of help, tutorials and discussions out there
- Lots of ready-made programs for what you may want to do

Why STATA, exactly

STATA is probably the most common in economics and the social sciences

- Efficient in run time
- Efficient in programming time
- Lots (and lots) of help, tutorials and discussions out there
- Lots of ready-made programs for what you may want to do

But there are many alternatives, e.g.

• R: free and popular

...

- MatLab: popular in dynamic macro, very efficient at matrix operations
- SPSS: popular in political science, perhaps simpler UI

Stata syntax

With a few exceptions, the basic language syntax in Stata is

command [varlist] [if] [, options]

where [...] indicate optional elements

Suppose you want to estimate an OLS regression of the variable *lnincome* on the variable *educ* for men only, this would look something like this:

regress lnincome educ if female==0

Note: Stata is case-sensitive (advice: only use upper-case for strings)

Core commands (know these!)

Task	Commands				
getting help	help, findit, lookfor				
moving around FS	cd, dir (ls)				
memory	clear, set memory				
using Stata data	use, save, append, merge				
reading raw data	insheet, infix, infile				
looking at data	describe, list, tabulate, summarize				
preparing data	generate, replace, rename, egen, encode				
	sort, by, reshape, collapse, keep, drop				
formatting	format, label				
saving output	log				
swiss pocket knife	display				

Tarjei Havnes (University of Oslo)

< □ > < □ > < □ > < □ > < □ > < □ >

э

Wildcards

There is no need to type the complete variable name: the shortest string of characters that uniquely identifies the variable (given the data currently loaded in memory) suffices

Example: suppose you have data in the following order (country2.dta) country y1980 y1985 y2000 y1990 y1995

- Lists of variables can be selected using wildcards
 - * = zero or more chars here
 - ? = one char here
 - y* selects y1980 y1985 y1990 y1995 y2000
 - y198? selects y1980 y1985
 - y*0 selects y1980 1990 y2000
- Ranges of variables can be selected using '-'
 - y1980-y1990 selects y1980 y1985 y2000 y1990

Getting help

Getting help on a command in Stata is easy, typing

. help command

will open a window that explains the full syntax of -command- and often includes examples. Use -help- if you want to find out more about the commands.

To search for a command you can use

findit keyword(s)

which will search the keynote database and the Internet and pop-up a window with the search results.

• -hsearch- searches the help files only.

Reading Stata dataset

. use auto (1978 Automobi	le Data)			
. describe				
Contains data	from aut	o.dta		
obs:	74			1978 Automobile Data
vars:	12			13 Apr 2009 17:45
size:	3,774 (99.9% of	memory free)	(_dta has notes)
	storage	display	value	
variable name	type	format	label	variable label
make	str18	%-18s		Make and Model
price	int	%8.0gc		Price
mpg	int	%8.0g		Mileage (mpg)
rep78	int	%8.0g		Repair Record 1978
headroom	float	%6.1f		Headroom (in.)
trunk	int	%8.0g		Trunk space (cu. ft.)
weight	int	%8.0gc		Weight (lbs.)
length	int	%8.0g		Length (in.)
turn	int	%8.0g		Turn Circle (ft.)
displacement	int	%8.0g		Displacement (cu. in.)
gear_ratio	float	%6.2f		Gear Ratio
foreign	byte	%8.0g	origin	Car type
Sorted by: fo	reign			

ECON 4136 14 / 27

< □ > < □ > < □ > < □ > < □ > < □ >

3

Stata keeps one (1) table in memory at a time columns (variables) are named

. li	st make price mpg		
	+ make	price	mpg
1. 2. 3. 4. 5.	AMC Concord AMC Pacer AMC Spirit Buick Century Buick Electra	4,099 4,749 3,799 4,816 7,827	22 17 22 20 15
6. 7. 8.	 Buick LeSabre Buick Opel Buick Regal	5,788 4,453 5,189	18 26 20

э

・ 戸 ト ・ ヨ ト ・ ヨ ト

Stata keeps one (1) table in memory at a time rows (observations) are numbered

(日) (周) (日) (日) (日) (0) (0)

Stop it! (or not)

- typing <Enter> : shows next line
- typing <Space> : shows next screen of output
- typing <q> : breaks

You can -set more off- (or -set more on-)

 to break output that scrolls by use <Ctrl+Break> (<Ctrl+C> on Unix)

A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Example session

·	list make price mpg	rep78 :	in 1/5				
	+ make 	price	mpg	rep78			
	1. AMC Concord 2. AMC Pacer	4,099	22	3			
	3. AMC Spirit	3,799	22	.			
	5. Buick Electra	4,816 7,827	15	3 4			
	+	70		+			
•	sum make price mpg	rep/8			_		
	Variable ++	Obs	Mean	Std.	Dev.	Min 	Max
	make	0					
	price	74	6165.257	2949.	496	3291	15906
	mpg	74	21.2973	5.785	503	12	41
	rep78	69	3.405797	.9899	323	1	5

ECON 4136 18 / 27

3

イロト イヨト イヨト イヨト

Browsing and editing data

You can also look at the data with the data editor (browse)

- launch using: -browse [varlist] [if]-
- try: browse make price if rep==.

You can edit data in a spreadsheet calling the command edit

- ONLY do this if you are constructing a new data set, or
- if you know EXACTLY what you're doing
- ALWAYS log your session if you edit something
 - or you lose the ability to backtrack

Missing values

How Stata defines missing values:

- Numeric missing values are represented by large positive values
 - shown as a dot '.'

• Empty strings are treated as missing values of type string Watch out:

- income > 100 evaluates to TRUE (=1) for income larger than 100 AND missing values!!!
- income >= . evaluates to TRUE for missing values

Most Stata statistical commands deal with missing values by disregarding observations with one or more missing values (called "listwise deletion" or "complete cases only")

Stata workflow Personal hygiene

In practice you should always try to strictly separate changing & analysing data:

- If irst prepare your data for analysis
 - copy data from disk to memory
 - change data (prepare for analysis)
 - save data to disk under new name
- 2 then analyze these data
 - copy analysis data into memory
 - start logging results to file
 - perform analysis
 - close log file

Advice: one directory per project & start session in project dir

Working in the menu line

You can use Stata through the menus (instead of command line)

- Don't use them
- With two potential exceptions:
 - Graphs: Save time
 - Learning syntax/Exploring what Stata can do
 - * This is usually easier in help files, manuals or online

Data types and memory

Keep track of data types

- numeric (byte, int, long, float, double)
- string
- large difference in memory
- try compress

In Stata 11 and earlier, you often need to assign memory

- Allocate memory with -set mem
 - e.g -set mem 250m- or -set mem 1g-
- Assign as much memory as you need, no more
 - analyze data = data set + 30-40%
 - prepare data = data set + 60-80%

Do files

Until now we have used the command line:

- great to develop but not to reproduce your analysis
- ALWAYS organize your work in Stata scripts

Stata scripts are called do-files after their extension (.do)

Use do-files (with informative names) to organize your work:

 <u>cr</u>eate dataset crincome.do makes data file income.dta

analysis

andescr.do calculates my descriptive statistics anreg.do performs my regression analysis

• making <u>graphs</u> grwageplot.do makes the graph wageplot.eps

Note: do-files can call do-files.

• You can create a master do-file which calls the do-files which reproduce your complete preparation and analysis trail

Tarjei Havnes (University of Oslo)

Do files

Make a do-file that does the following (USE HELP!)

- navigate to your working directory
- read in data file cps1992to2008.dta
- summarize your data
- summarize log hourly wages with and without a bachelor
- regress log hourly wages on bachelor
- table the estimated coefficients, SEs, R2 and sample size
 - with three decimals
 - indicating 1%, 5% and 10% significance with stars
- include a control for age and age squared, and table both results in the same table
- use robust standard errors, and include results in the same table

Do-file

```
//ancps1992to2008.do - ECON4136 session 1
cd D:\Dropbox\mine-ting\undervisning\statacourse
use cps1992to2008.dta, clear
d
S11m
sum ahe if bachelor == 0
sum ahe if bachelor == 1
gen lnahe = ln(ahe)
regress lnahe bachelor
est store lnwbach
est tab , b(%8.3f) se(%8.3f) stats(N r2)
// EXTRA
gen agesq = age*age
regress lnahe bachelor age agesg
est store lnwbach_age
regress lnahe bachelor, robust
est store lnwbach robust
regress lnahe bachelor age agesq, robust
est store lnwbach_age_robust
est tab lnwbach lnwbach age lnwbach robust lnwbach age robust ///
. b(%8.3f) se(%8.3f) stats(N r2)
```

э.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Do-file

```
//ancps1992to2008.do - ECON4136 session 1
cd D:\Dropbox\mine-ting\undervisning\statacourse
use cps1992to2008.dta, clear
//DATA MANIPULATION
gen lnahe = ln(ahe)
gen agesq = age*age
//DESCRIPTIVES
sum
sum ahe if bachelor == 0
sum ahe if bachelor == 1
//REGRESSION ANALYSIS
regress lnahe bachelor
est store lnwbach
regress lnahe bachelor age agesq
est store lnwbach_age
regress lnahe bachelor, robust
est store lnwbach robust
regress lnahe bachelor age agesq, robust
est store lnwbach_age_robust
//REPORT
est tab lnwbach , b(%8.3f) se(%8.3f) stats(N r2)
est tab lnwbach lnwbach_age lnwbach_robust lnwbach_age_robust ///
. b(%8.3f) se(%8.3f) stats(N r2)
```

э

イロト イポト イヨト イヨト