ECON4140/4145 Mathematics 3

Friday 8 December 2006, 09.00–12.00.

There are 2 pages of problems to be solved.

All printed and written material may be used. Pocket calculators are allowed. State reasons for all your answers.

Grades given: A (best), B, C, D, F, with D as the weakest passing grade.

Problem 1

Consider the system of differential equations

$$\dot{x} = y - e^{2-x} - 1$$
$$\dot{y} = x^2 - xy$$

- (a) Show that (2,2) is an equilibrium point. Find all equilibrium points.
- (b) Classify the equilibrium point (2, 2), if possible.
- (c) Draw a phase diagram in the first quadrant (i.e. for $x \ge 0, y \ge 0$) and indicate some possible integral curves.
- (d) Compute the eigenvalues of the Jacobian at (2, 2). Find an eigenvector associated with each eigenvalue.

Problem 2

Consider the nonlinear programming problem

maximize
$$x + 3y - 4e^{-x-y}$$
 subject to
$$\begin{cases} x + 2y \le 2\\ x + y \le 1 \end{cases}$$

- (a) Write down the necessary Kuhn–Tucker conditions for a point (x, y) to be a solution of the problem. Are the conditions also sufficient?
- (b) Solve the problem.

(Cont.)

Mat3x06 10.12.2006 869

Problem 3

Consider the optimal control problem

$$\max \int_0^T (2x - 6u)e^{-t} dt, \quad \dot{x} = x + u, \ x(0) = 0, \ x(T) \text{ free}, \ u \in [0, 1]$$

assuming that T > 3.

- (a) Write down the conditions in the maximum principle for a pair $(x^*(t), u^*(t))$ to solve the problem. Are the conditions sufficient for optimality in this case?
- (b) Solve the problem.
- (c) Let $V(T) = \int_0^T (2x^*(t) 6u^*(t))e^{-t} dt$ and let $H^*(t)$ denote the Hamiltonian evaluated along the optimal solution. Verify that $V'(T) = H^*(T)$.