Exam, ECON4140/ECON4145 Mathematics 3, 7/12-04

Problem 1

See model answers to Problem 5, Seminar 5.

Problem 2

(a) g(x, y) is concave for $p \in [-1, 0]$, $q \in [-1, 0]$. (Use the Hessian. It is useful to consider some special values of p and q to confirm the result. For example p = q = -1 and p = q = -2.)

- (b) f(x,y) is concave iff $x \ge 1/4$.
- (c) It follows from (b) that the Lagrangian is concave in (x, y) for $x \ge 1/4$.

(d) (x, y) = (3/2, -1/4) with $\lambda_1 = \lambda_2 = 0$ solves the problem.

Problem 3

(a) $u^*(t) = \frac{5(4e^t + e^{-3t/2})}{4e^T - e^{-3T/2}}, x^*(t) = \frac{10(e^t - e^{-3t/2})}{e^T - e^{-3T/2}}.$ (Hint: You derive $\dot{p} = -p$, so $p = Ae^{-t}$, and $\dot{x}^* - x^* = 4Ae^{-3t/2}.$) (b) $u^*(t) = \frac{1}{2}x_0e^t, x^*(t) = x_0e^t.$ (Here p(t) = 0 for all t.)

Problem 4

Rather hard. (Hint: Prove that Ax = Bx for all 2×2 -vectors x.)

mat3x04f 24.11.2006 644