Exam, ECON4140/ECON4145 Mathematics 3, 7/12-04

Problem 1

See model answers to Problem 5, Seminar 5.

Problem 2

(a) $g(x, y)$ is concave for $p \in[-1,0], q \in[-1,0]$. (Use the Hessian. It is useful to consider some special values of p and q to confirm the result. For example $p=q=-1$ and $p=q=-2$.)
(b) $f(x, y)$ is concave iff $x \geq 1 / 4$.
(c) It follows from (b) that the Lagrangian is concave in (x, y) for $x \geq 1 / 4$.
(d) $(x, y)=(3 / 2,-1 / 4)$ with $\lambda_{1}=\lambda_{2}=0$ solves the problem.

Problem 3

(a) $u^{*}(t)=\frac{5\left(4 e^{t}+e^{-3 t / 2}\right)}{4 e^{T}-e^{-3 T / 2}}, x^{*}(t)=\frac{10\left(e^{t}-e^{-3 t / 2}\right)}{e^{T}-e^{-3 T / 2}}$. (Hint: You derive $\dot{p}=-p$, so $p=A e^{-t}$, and $\dot{x}^{*}-x^{*}=4 A e^{-3 t / 2}$.)
(b) $u^{*}(t)=\frac{1}{2} x_{0} e^{t}, x^{*}(t)=x_{0} e^{t}$. (Here $p(t)=0$ for all t.)

Problem 4

Rather hard. (Hint: Prove that $\mathbf{A x}=\mathbf{B x}$ for all 2×2-vectors \mathbf{x}.)

