Econ 4140/4145, 9/12-05

Answers to the problems

Problem 1

(a) Equilibrium points where $\dot{x}=\dot{y}=0$. Note that $\dot{y}=0$ iff $y^{2}=\frac{1}{4} x^{2}$, i.e. $y= \pm \frac{1}{2} x$. Inserting $y=\frac{1}{2} x$ into $\dot{x}=0$ yields $x^{2}+2 x-24=0$, with solutions $x=-6$ and $x=4$. Thus $(-6,-3)$ and $(4,2)$ are equilibrium points. Inserting $y=-\frac{1}{2} x$ into $\dot{x}=0$ eventually yields $(6,-3)$ and $(-4,2)$ as equilibrium points. So the 4 equilibrium points are: $(-6,-3),(-4,2),(4,2)$ and $(6,-3)$.
(b) With $f(x, y)=-\frac{1}{4} x^{2}-y+6, g(x, y)=-x^{2}+4 y^{2}$, the Jacobian matrix is

$$
J(x, y)=\left(\begin{array}{ll}
f_{1}^{\prime}(x, y) & f_{2}^{\prime}(x, y) \\
g_{1}^{\prime}(x, y) & g_{2}^{\prime}(x, y)
\end{array}\right)=\left(\begin{array}{cc}
-\frac{1}{2} x & -1 \\
-2 x & 8 y
\end{array}\right)
$$

Hence

$$
J(4,2)=\left(\begin{array}{ll}
-2 & -1 \\
-8 & 16
\end{array}\right)
$$

Since $|J(4,2)|=-40<0,(4,2)$ is a saddle point.
(c) A phase diagram looks roughly like this:

See the second figure on fig0305.pdf

Problem 2

(a) The Lagrangian is

$$
\mathcal{L}=x y-\lambda_{1}\left(x^{2}+r y^{2}\right)-\lambda_{2}(-x)
$$

The necessary Kuhn-Tucker conditions for $\left(x^{*}, y^{*}\right)$ to solve the problem are:

$$
\begin{aligned}
& \mathcal{L}_{1}^{\prime}=y^{*}-2 \lambda_{1} x^{*}+\lambda_{2}=0 \\
& \mathcal{L}_{2}^{\prime}=x^{*}-2 r \lambda_{1} y^{*}=0 \\
& \lambda_{1} \geq 0 \quad\left(\lambda_{1}=0 \quad \text { if } \quad\left(x^{*}\right)^{2}+r\left(y^{*}\right)^{2}<m\right) \\
& \lambda_{2} \geq 0 \quad\left(\lambda_{2}=0 \quad \text { if } \quad x^{*}>1\right) \\
& \left(x^{*}\right)^{2}+r\left(y^{*}\right)^{2} \leq m \\
& x^{*} \geq 1
\end{aligned}
$$

(b) From (2) and (6) we see that $\lambda_{1}=0$ is impossible. Thus $\lambda_{1}>0$ and from (3) and (5),

$$
\begin{equation*}
\left(x^{*}\right)^{2}+r\left(y^{*}\right)^{2}=m \tag{7}
\end{equation*}
$$

(Forts.)

Case I, $\lambda_{2}=0$. Then from (1) and (2), $y^{*}=2 \lambda_{1} x^{*}$ and $x^{*}=2 \lambda_{1} r y^{*}$, so $y^{*}=$ $\overline{4 \lambda_{1}^{2} r y^{*} \text {. If } y^{*}}=0$, then (2) implies $x^{*}=0$, which is impossible. Hence, $\lambda_{1}^{2}=1 / 4 r$ and thus $\lambda_{1}=1 / 2 \sqrt{r}$. Then $y^{*}=x^{*} / \sqrt{r}$, which inserted into (7) and solved for x^{*} yields $x^{*}=\sqrt{m / 2}$ and then $y^{*}=\sqrt{m / 2 r}$. Note that $x^{*} \geq 1$ iff $\sqrt{m / 2} \geq 1 \mathrm{iff}$ $m \geq 2$.

Thus for $m \geq 2, x^{*}=\sqrt{m / 2}$ and $y^{*}=\sqrt{m / 2 r}$, with $\lambda_{1}=1 / 2 \sqrt{r}$ and $\lambda_{2}=0$ is a solution candidate.
Case II, $\lambda_{2}>0$. Then $x^{*}=1$ and from (7) we have $r\left(y^{*}\right)^{2}=m-1$, so $y^{*}=$ $\sqrt{(m-1) / r}\left(y^{*}=-\sqrt{(m-1) / r}\right.$ contradicts (2)). Inserting these values for x^{*} and y^{*} into (1) and (2) and solving for λ_{1} and λ_{2} yields $\lambda_{1}=1 / 2 \sqrt{r(m-1)}$ and furthermore, $\lambda_{2}=(2-m) / \sqrt{r(m-1)}$. Note that $\lambda_{2}>0$ iff $m<2$.

Thus, for $1<m<2$, the only solution candidate is $x^{*}=1, y^{*}=\sqrt{(m-1) / r}$, with $\lambda_{1}=1 / 2 \sqrt{r(m-1)}$ and $\lambda_{2}=(2-m) / \sqrt{r(m-1)}$.

The objective function is continuous and the constraint set is obviously closed and bounded, so by the extreme value theorem there has to be a maximum. The solution candidates we have found are therefore optimal. (Alternatively, look at the Hessian matrix $\mathbf{H}(x, y)=\left(\begin{array}{ll}\mathcal{L}_{11}^{\prime \prime}(x, y) & \mathcal{L}_{12}^{\prime \prime}(x, y) \\ \mathcal{L}_{21}^{\prime \prime}(x, y) & \mathcal{L}_{22}^{\prime \prime}(x, y)\end{array}\right)=\left(\begin{array}{cc}-2 \lambda_{1} & 1 \\ 1 & -2 r \lambda_{1}\end{array}\right)$. Here $\mathcal{L}_{11}^{\prime \prime}(x, y)=-2 \lambda_{1} \leq 0, \mathcal{L}_{22}^{\prime \prime}(x, y)=-2 r \lambda_{1} \leq 0$, and $|\mathbf{H}(x, y)|=4 r \lambda_{1}^{2}-1$. In the case $m \geq 2,|\mathbf{H}(x, y)|=0$, and in the case $1<m<2,|\mathbf{H}(x, y)|=$ $(2-m) /(m-1)>0$. Thus in both cases, $\mathcal{L}(x, y)$ is concave.)

Problem 3

With $F(t, x, \dot{x})=\left(t x-x^{2}-t^{2} \dot{x}-\frac{1}{2} \dot{x}^{2}\right) e^{-t}$,

$$
\frac{\partial F}{\partial x}=(t-2 x) e^{-t}, \quad \frac{\partial F}{\partial \dot{x}}=\left(-t^{2}-\dot{x}\right) e^{-t}
$$

and the Euler equation $\partial F / \partial x-\frac{d}{d t}(\partial F / \partial \dot{x})=0$ becomes

$$
(t-2 x) e^{-t}-\frac{d}{d t}\left(-t^{2}-\dot{x}\right) e^{-t}=0
$$

or

$$
(t-2 x) e^{-t}+(2 t+\ddot{x}) e^{-t}-\left(t^{2}+\dot{x}\right) e^{-t}=0
$$

Cancelling e^{-t} and rearranging, we obtain the Euler equation

$$
\ddot{x}-\dot{x}-2 x=t^{2}-3 t
$$

Problem 4

(a) With the Hamiltonian $H(t, x, u, p)=x-e^{-u}-p u$, the necessary conditions for $\left(x^{*}(t), u^{*}(t)\right)$ to solve the problem are that there exists a continuous function $p=p(t)$ such that:
(I) $u^{*}(t)$ maximizes $x^{*}(t)-e^{-u}-p(t) u$ for $u \leq 1$
(II) $\dot{p}(t)=-\partial H^{*} / \partial x=-1$, and $p(1)=0$
(III) $\dot{x}^{*}(t)=-u^{*}(t), x^{*}(0)=0$

The Hamiltonian is concave as a sum of concave functions, so conditions (I)-(III) are sufficient for optimality.
(b) From (II), $p(t)=1-t$, and according to (I), for each $t \in[0,1], u^{*}(t)$ must maximize $h(u)=(t-1) u-e^{-u}$ for $u \leq 1$. The function $h(u)$ is concave, so the maximum must be at $u=1$ if $h^{\prime}(1)=t-1+e^{-1} \geq 0$. This occurs if $t \geq 1-1 / e$. For $t<1-1 / e$, maximum occurs when $h^{\prime}(u)=0$, i.e. for $u=-\ln (1-t)$. Our suggestion for an optimal control is therefore

$$
u^{*}(t)=\left\{\begin{array}{cl}
-\ln (1-t) & \text { if } t \in[0,1-1 / e] \\
1 & \text { if } t \in(1-1 / e, 1]
\end{array}\right.
$$

In the interval $[0,1-1 / e], \dot{x}^{*}(t)=\ln (1-t)$, so $x^{*}(t)=\int(\ln (1-t) d t$. Introduce $z=1-u$ as a new variable. Then $x^{*}(t)=\int \ln (1-t) d t=-\int \ln z d z=$ $-z \ln z+z+C=-(1-t) \ln (1-t)+(1-t)+C$. Since $x^{*}(0)=0$, we get $\mathrm{x}^{*}(t)=-(1-t) \ln (1-t)-t$. In particular, $x^{*}(1-1 / e)=2 / e-1$.
In the interval $(1-1 / e, 1], \dot{x}^{*}(t)=-1$, so with $x^{*}(1-1 / e)=2 / e-1$, so $x^{*}(t)=-t+1 / e$. Thus

$$
x^{*}(t)= \begin{cases}-(1-t) \ln (1-t)-t & \text { if } t \in[0,1-1 / e] \\ -t+1 / e & \text { if } t \in(1-1 / e, 1]\end{cases}
$$

Since H is concave in (x, u), we have found the solution.

