Econ 4140/4145, 9/12-05

Answers to the problems

Problem 1

(a) Equilibrium points where $\dot{x} = \dot{y} = 0$. Note that $\dot{y} = 0$ iff $y^2 = \frac{1}{4}x^2$, i.e. $y = \pm \frac{1}{2}x$. Inserting $y = \frac{1}{2}x$ into $\dot{x} = 0$ yields $x^2 + 2x - 24 = 0$, with solutions x = -6 and x = 4. Thus (-6, -3) and (4, 2) are equilibrium points. Inserting $y = -\frac{1}{2}x$ into $\dot{x} = 0$ eventually yields (6, -3) and (-4, 2) as equilibrium points. So the 4 equilibrium points are: (-6, -3), (-4, 2), (4, 2) and (6, -3).

(b) With $f(x,y) = -\frac{1}{4}x^2 - y + 6$, $g(x,y) = -x^2 + 4y^2$, the Jacobian matrix is

$$J(x,y) = \begin{pmatrix} f'_1(x,y) & f'_2(x,y) \\ g'_1(x,y) & g'_2(x,y) \end{pmatrix} = \begin{pmatrix} -\frac{1}{2}x & -1 \\ -2x & 8y \end{pmatrix}$$

Hence

$$J(4,2) = \begin{pmatrix} -2 & -1 \\ -8 & 16 \end{pmatrix}$$

Since |J(4,2)| = -40 < 0, (4,2) is a saddle point.

(c) A phase diagram looks roughly like this:

See the second figure on fig0305.pdf

Problem 2

(a) The Lagrangian is

$$\mathcal{L} = xy - \lambda_1(x^2 + ry^2) - \lambda_2(-x)$$

The necessary Kuhn–Tucker conditions for (x^*, y^*) to solve the problem are:

$$\mathcal{L}'_{1} = y^{*} - 2\lambda_{1}x^{*} + \lambda_{2} = 0$$

$$\mathcal{L}'_{2} = x^{*} - 2r\lambda_{1}y^{*} = 0$$

$$\lambda_{1} \ge 0 \quad (\lambda_{1} = 0 \quad \text{if} \quad (x^{*})^{2} + r(y^{*})^{2} < m)$$

$$\lambda_{2} \ge 0 \quad (\lambda_{2} = 0 \quad \text{if} \quad x^{*} > 1)$$

$$(x^{*})^{2} + r(y^{*})^{2} \le m$$

$$x^{*} \ge 1$$

(b) From (2) and (6) we see that $\lambda_1 = 0$ is impossible. Thus $\lambda_1 > 0$ and from (3) and (5),

$$(x^*)^2 + r(y^*)^2 = m (7)$$

(Forts.)

Case I, $\lambda_2 = 0$. Then from (1) and (2), $y^* = 2\lambda_1 x^*$ and $x^* = 2\lambda_1 r y^*$, so $y^* = 4\lambda_1^2 r y^*$. If $y^* = 0$, then (2) implies $x^* = 0$, which is impossible. Hence, $\lambda_1^2 = 1/4r$ and thus $\lambda_1 = 1/2\sqrt{r}$. Then $y^* = x^*/\sqrt{r}$, which inserted into (7) and solved for x^* yields $x^* = \sqrt{m/2}$ and then $y^* = \sqrt{m/2r}$. Note that $x^* \ge 1$ iff $\sqrt{m/2} \ge 1$ iff $m \ge 2$.

Thus for $m \ge 2$, $x^* = \sqrt{m/2}$ and $y^* = \sqrt{m/2r}$, with $\lambda_1 = 1/2\sqrt{r}$ and $\lambda_2 = 0$ is a solution candidate.

Case II, $\lambda_2 > 0$. Then $x^* = 1$ and from (7) we have $r(y^*)^2 = m - 1$, so $y^* = \sqrt{(m-1)/r} (y^* = -\sqrt{(m-1)/r} \text{ contradicts (2)})$. Inserting these values for x^* and y^* into (1) and (2) and solving for λ_1 and λ_2 yields $\lambda_1 = 1/2\sqrt{r(m-1)}$ and furthermore, $\lambda_2 = (2-m)/\sqrt{r(m-1)}$. Note that $\lambda_2 > 0$ iff m < 2.

Thus, for 1 < m < 2, the only solution candidate is $x^* = 1$, $y^* = \sqrt{(m-1)/r}$, with $\lambda_1 = 1/2\sqrt{r(m-1)}$ and $\lambda_2 = (2-m)/\sqrt{r(m-1)}$.

The objective function is continuous and the constraint set is obviously closed and bounded, so by the extreme value theorem there has to be a maximum. The solution candidates we have found are therefore optimal. (Alternatively, look at the Hessian matrix $\mathbf{H}(x,y) = \begin{pmatrix} \mathcal{L}_{11}''(x,y) & \mathcal{L}_{12}''(x,y) \\ \mathcal{L}_{21}''(x,y) & \mathcal{L}_{22}''(x,y) \end{pmatrix} = \begin{pmatrix} -2\lambda_1 & 1 \\ 1 & -2r\lambda_1 \end{pmatrix}$. Here $\mathcal{L}_{11}''(x,y) = -2\lambda_1 \leq 0$, $\mathcal{L}_{22}''(x,y) = -2r\lambda_1 \leq 0$, and $|\mathbf{H}(x,y)| = 4r\lambda_1^2 - 1$. In the case $m \geq 2$, $|\mathbf{H}(x,y)| = 0$, and in the case 1 < m < 2, $|\mathbf{H}(x,y)| = (2-m)/(m-1) > 0$. Thus in both cases, $\mathcal{L}(x,y)$ is concave.)

Problem 3

With $F(t, x, \dot{x}) = (tx - x^2 - t^2 \dot{x} - \frac{1}{2} \dot{x}^2)e^{-t}$,

$$\frac{\partial F}{\partial x} = (t - 2x)e^{-t}, \qquad \frac{\partial F}{\partial \dot{x}} = (-t^2 - \dot{x})e^{-t}$$

and the Euler equation $\partial F/\partial x - \frac{d}{dt}(\partial F/\partial \dot{x}) = 0$ becomes

$$(t-2x)e^{-t} - \frac{d}{dt}(-t^2 - \dot{x})e^{-t} = 0$$

or

$$(t-2x)e^{-t} + (2t+\ddot{x})e^{-t} - (t^2+\dot{x})e^{-t} = 0$$

Cancelling e^{-t} and rearranging, we obtain the Euler equation

$$\ddot{x} - \dot{x} - 2x = t^2 - 3t$$

(Forts.)

Problem 4

(a) With the Hamiltonian $H(t, x, u, p) = x - e^{-u} - pu$, the necessary conditions for $(x^*(t), u^*(t))$ to solve the problem are that there exists a continuous function p = p(t) such that:

(I)
$$u^{*}(t)$$
 maximizes $x^{*}(t) - e^{-u} - p(t)u$ for $u \le 1$
(II) $\dot{p}(t) = -\partial H^{*}/\partial x = -1$, and $p(1) = 0$
(III) $\dot{x}^{*}(t) = -u^{*}(t), x^{*}(0) = 0$

The Hamiltonian is concave as a sum of concave functions, so conditions (I)–(III) are sufficient for optimality.

(b) From (II), p(t) = 1 - t, and according to (I), for each $t \in [0, 1]$, $u^*(t)$ must maximize $h(u) = (t - 1)u - e^{-u}$ for $u \le 1$. The function h(u) is concave, so the maximum must be at u = 1 if $h'(1) = t - 1 + e^{-1} \ge 0$. This occurs if $t \ge 1 - 1/e$. For t < 1 - 1/e, maximum occurs when h'(u) = 0, i.e. for $u = -\ln(1-t)$. Our suggestion for an optimal control is therefore

$$u^*(t) = \begin{cases} -\ln(1-t) & \text{if } t \in [0, 1-1/e] \\ 1 & \text{if } t \in (1-1/e, 1] \end{cases}$$

In the interval [0, 1-1/e], $\dot{x}^*(t) = \ln(1-t)$, so $x^*(t) = \int (\ln(1-t) dt$. Introduce z = 1 - u as a new variable. Then $x^*(t) = \int \ln(1-t) dt = -\int \ln z dz = -z \ln z + z + C = -(1-t) \ln(1-t) + (1-t) + C$. Since $x^*(0) = 0$, we get $x^*(t) = -(1-t) \ln(1-t) - t$. In particular, $x^*(1-1/e) = 2/e - 1$.

In the interval (1 - 1/e, 1], $\dot{x}^*(t) = -1$, so with $x^*(1 - 1/e) = 2/e - 1$, so $x^*(t) = -t + 1/e$. Thus

$$x^*(t) = \begin{cases} -(1-t)\ln(1-t) - t & \text{if } t \in [0, 1-1/e] \\ -t + 1/e & \text{if } t \in (1-1/e, 1] \end{cases}$$

Since H is concave in (x, u), we have found the solution.