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Answers to the problems

Problem 1

(a) Equilibrium points where ẋ = ẏ = 0. Note that ẏ = 0 iff y2 = 1
4x2, i.e.

y = ± 1
2x. Inserting y = 1

2x into ẋ = 0 yields x2 + 2x − 24 = 0, with solutions
x = −6 and x = 4. Thus (−6,−3) and (4, 2) are equilibrium points. Inserting
y = − 1

2x into ẋ = 0 eventually yields (6,−3) and (−4, 2) as equilibrium points.
So the 4 equilibrium points are: (−6,−3), (−4, 2), (4, 2) and (6,−3).
(b) With f(x, y) = − 1

4x2 − y + 6, g(x, y) = −x2 + 4y2, the Jacobian matrix is

J(x, y) =
(

f ′
1(x, y) f ′

2(x, y)
g′
1(x, y) g′

2(x, y)

)
=

( − 1
2x −1

−2x 8y

)

Hence

J(4, 2) =
( −2 −1

−8 16

)

Since |J(4, 2)| = −40 < 0, (4, 2) is a saddle point.
(c) A phase diagram looks roughly like this:

See the second figure on fig0305.pdf

Problem 2

(a) The Lagrangian is

L = xy − λ1(x2 + ry2) − λ2(−x)

The necessary Kuhn–Tucker conditions for (x∗, y∗) to solve the problem are:
L′

1 = y∗ − 2λ1x
∗ + λ2 = 0

L′
2 = x∗ − 2rλ1y

∗ = 0
λ1 ≥ 0 (λ1 = 0 if (x∗)2 + r(y∗)2 < m)
λ2 ≥ 0 (λ2 = 0 if x∗ > 1)
(x∗)2 + r(y∗)2 ≤ m

x∗ ≥ 1

(b) From (2) and (6) we see that λ1 = 0 is impossible. Thus λ1 > 0 and from (3)
and (5),

(x∗)2 + r(y∗)2 = m (7)

(Forts.)
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Case I, λ2 = 0. Then from (1) and (2), y∗ = 2λ1x
∗ and x∗ = 2λ1ry

∗, so y∗ =
4λ2

1ry
∗. If y∗ = 0, then (2) implies x∗ = 0, which is impossible. Hence, λ2

1 = 1/4r
and thus λ1 = 1/2

√
r. Then y∗ = x∗/

√
r, which inserted into (7) and solved for

x∗ yields x∗ =
√

m/2 and then y∗ =
√

m/2r. Note that x∗ ≥ 1 iff
√

m/2 ≥ 1 iff
m ≥ 2.

Thus for m ≥ 2, x∗ =
√

m/2 and y∗ =
√

m/2r, with λ1 = 1/2
√

r and λ2 = 0
is a solution candidate.
Case II, λ2 > 0. Then x∗ = 1 and from (7) we have r(y∗)2 = m − 1, so y∗ =√

(m − 1)/r (y∗ = −√
(m − 1)/r contradicts (2)). Inserting these values for x∗

and y∗ into (1) and (2) and solving for λ1 and λ2 yields λ1 = 1/2
√

r(m − 1) and
furthermore, λ2 = (2 − m)/

√
r(m − 1). Note that λ2 > 0 iff m < 2.

Thus, for 1 < m < 2, the only solution candidate is x∗ = 1, y∗ =
√

(m − 1)/r,
with λ1 = 1/2

√
r(m − 1) and λ2 = (2 − m)/

√
r(m − 1).

The objective function is continuous and the constraint set is obviously closed
and bounded, so by the extreme value theorem there has to be a maximum. The
solution candidates we have found are therefore optimal. (Alternatively, look at

the Hessian matrix H(x, y) =
( L′′

11(x, y) L′′
12(x, y)

L′′
21(x, y) L′′

22(x, y)

)
=

( −2λ1 1
1 −2rλ1

)
.

Here L′′
11(x, y) = −2λ1 ≤ 0, L′′

22(x, y) = −2rλ1 ≤ 0, and |H(x, y)| = 4rλ2
1 − 1.

In the case m ≥ 2, |H(x, y)| = 0, and in the case 1 < m < 2, |H(x, y)| =
(2 − m)/(m − 1) > 0. Thus in both cases, L(x, y) is concave.)

Problem 3

With F (t, x, ẋ) = (tx − x2 − t2ẋ − 1
2 ẋ2)e−t,

∂F

∂x
= (t − 2x)e−t,

∂F

∂ẋ
= (−t2 − ẋ)e−t

and the Euler equation ∂F/∂x − d
dt (∂F/∂ẋ) = 0 becomes

(t − 2x)e−t − d

dt
(−t2 − ẋ)e−t = 0

or

(t − 2x)e−t + (2t + ẍ)e−t − (t2 + ẋ)e−t = 0

Cancelling e−t and rearranging, we obtain the Euler equation

ẍ − ẋ − 2x = t2 − 3t

(Forts.)
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Problem 4

(a) With the Hamiltonian H(t, x, u, p) = x − e−u − pu, the necessary conditions
for (x∗(t), u∗(t)) to solve the problem are that there exists a continuous function
p = p(t) such that:

(I) u∗(t) maximizes x∗(t) − e−u − p(t)u for u ≤ 1
(II) ṗ(t) = −∂H∗/∂x = −1, and p(1) = 0
(III) ẋ∗(t) = −u∗(t), x∗(0) = 0

The Hamiltonian is concave as a sum of concave functions, so conditions (I)–(III)
are sufficient for optimality.
(b) From (II), p(t) = 1 − t, and according to (I), for each t ∈ [0, 1], u∗(t) must

maximize h(u) = (t − 1)u − e−u for u ≤ 1. The function h(u) is concave,
so the maximum must be at u = 1 if h′(1) = t − 1 + e−1 ≥ 0. This occurs
if t ≥ 1 − 1/e. For t < 1 − 1/e, maximum occurs when h′(u) = 0, i.e. for
u = − ln(1 − t). Our suggestion for an optimal control is therefore

u∗(t) =
{ − ln(1 − t) if t ∈ [0, 1 − 1/e]

1 if t ∈ (1 − 1/e, 1]

In the interval [0, 1−1/e], ẋ∗(t) = ln(1−t), so x∗(t) =
∫

(ln(1−t) dt. Introduce
z = 1 − u as a new variable. Then x∗(t) =

∫
ln(1 − t) dt = − ∫

ln z dz =
−z ln z + z + C = −(1 − t) ln(1 − t) + (1 − t) + C. Since x∗(0) = 0, we get
x∗(t) = −(1 − t) ln(1 − t) − t. In particular, x∗(1 − 1/e) = 2/e − 1.
In the interval (1 − 1/e, 1], ẋ∗(t) = −1, so with x∗(1 − 1/e) = 2/e − 1, so

x∗(t) = −t + 1/e. Thus

x∗(t) =
{ −(1 − t) ln(1 − t) − t if t ∈ [0, 1 − 1/e]

−t + 1/e if t ∈ (1 − 1/e, 1]

Since H is concave in (x, u), we have found the solution.
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