ECON4140/4145 Mathematics 3

Monday 10 December 2007, 14:30-17:30.
There are 2 pages of problems to be solved.
All printed and written material may be used. Pocket calculators are allowed. State reasons for all your answers.

Grades given: A (best), B, C, D, E, F, with E as the weakest passing grade.

Problem 1

Consider the following system of differential equations:

$$
\begin{align*}
\dot{x} & =2 x-x^{2}-y+2 \\
\dot{y} & =x-y \tag{S}
\end{align*}
$$

(a) Find all equilibrium points for the system (S) and determine for each of them whether it is locally asymptotically stable, a saddle point, or neither.
(b) Draw a phase diagram for the system in the first quadrant (i.e. for $x>0$, $y>0$), and try to sketch some possible solution curves.

Problem 2

Consider the matrix $\mathbf{A}=\left(\begin{array}{rrr}-1 & -1 & 1 / 3 \\ 2 & 2 & -2 / 3 \\ -2 & -1 & 2 / 3\end{array}\right)$.
(a) Show that the vectors $\mathbf{v}_{1}=\left(\begin{array}{l}1 \\ 0 \\ 3\end{array}\right), \mathbf{v}_{2}=\left(\begin{array}{r}1 \\ -2 \\ -1\end{array}\right)$, and $\mathbf{v}_{3}=\left(\begin{array}{r}1 \\ -2 \\ 0\end{array}\right)$ are eigenvectors of \mathbf{A}.
(b) Let $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ be the eigenvectors given in part (a). Show that the vector $\mathbf{w}=\left(\begin{array}{l}4 \\ 0 \\ 5\end{array}\right)$ can be written as a linear combination of $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$, and use this to describe what happens to $\mathbf{A}^{n} \mathbf{w}$ as $n \rightarrow \infty$.
(Cont.)

Problem 3

Consider the following nonlinear programming problem:

$$
\text { maximize }-(x-6)^{2}-(y-5)^{2} \quad \text { subject to } \quad\left\{\begin{aligned}
x^{2}+y^{2} & \leq 25 \\
a(x-3)+y & \leq 4
\end{aligned}\right.
$$

where a is a parameter, $a \neq 3 / 4$.
(a) Write out the Kuhn-Tucker conditions for a point (x, y) to be the optimal solution of the problem.
(b) For what values of the parameter a will $(x, y)=(3,4)$ be the optimal solution? (Hint: Look at the Lagrange multipliers in the Kuhn-Tucker conditions. You can take for granted that the constraint qualification (Norwegian: "føringsbetingelsen") is satisfied.)

Problem 4

Consider the following optimal control problem:
$\max \int_{0}^{T}\left(u x-u^{2}-\frac{1}{4} x^{2}\right) e^{-t} d t, \quad \dot{x}=2 u, \quad x(0)=x_{0}, \quad x(T)=x_{T}, \quad u \in(-\infty, \infty)$.
(a) Write out the necessary conditions from the maximum principle for an admissible pair $\left(x^{*}, u^{*}\right)$ to be optimal. (You can take for granted that $p_{0}=1$.)
(b) Solve the problem.

