Solutions of the examination problems in ECON4140/4145 Mathematics 3, 10 December 2007

Problem 1

(a) Let $f(x, y)=2 x-x^{2}-y+2$ and $g(x, y)=x-y$. The equilibrium points (x, y) are the solutions of the equation system

$$
\begin{array}{r}
2 x-x^{2}-y+2=0 \\
x-y=0
\end{array}
$$

The second equation yields $y=x$, and then the first equation implies $x-x^{2}+2=0$, which has the roots $x_{1}=-1, x_{2}=2$. Thus the equilibrium points are $\left(x_{1}, y_{1}\right)=$ $(-1,-1)$ and $\left(x_{2}, y_{2}\right)=(2,2)$.

The Jacobian matrix of f and g with respect to x and y is

$$
\mathbf{A}(x, y)=\left(\begin{array}{cc}
2-2 x & -1 \\
1 & -1
\end{array}\right)
$$

At the equilibrium points $\mathbf{A}(x, y)$ becomes

$$
\mathbf{A}_{1}=\mathbf{A}(-1,-1)=\left(\begin{array}{ll}
4 & -1 \\
1 & -1
\end{array}\right), \quad \mathbf{A}_{2}=\mathbf{A}(2,2)=\left(\begin{array}{rr}
-2 & -1 \\
1 & -1
\end{array}\right)
$$

We have $\operatorname{det}\left(\mathbf{A}_{1}\right)=-3<0$, so $(-1,-1)$ is a saddle point. The equilibrium point $(2,2)$ is locally asymptotically stable, because $\operatorname{det}\left(\mathbf{A}_{2}\right)=3>0$ and $\operatorname{tr}\left(\mathbf{A}_{2}\right)=$ $-3<0$.

Figure 1

Figure 2
(b) The nullclines $\dot{x}=0$ and $\dot{y}=0$ are given by the equations $y=2 x-x^{2}+2$ and $y=x$, respectively. Figure 1 above shows the nullclines and arrows indicating the signs of \dot{x} and \dot{y} in each of the four regions into which the nullclines divide the first quadrant of the $x y$-plane. Figure 2 shows some of the solution paths.

Problem 2

(a) Straightforward matrix multiplication shows that

$$
\mathbf{A} \mathbf{v}_{1}=\mathbf{0}=0 \mathbf{v}_{1}, \quad \mathbf{A} \mathbf{v}_{2}=\frac{2}{3} \mathbf{v}_{2}, \quad \mathbf{A} \mathbf{v}_{3}=\mathbf{v}_{3}=1 \mathbf{v}_{3}
$$

It follows that all the \mathbf{v} 's are eigenvectors of \mathbf{A}, corresponding to the eigenvalues

$$
\lambda_{1}=0, \quad \lambda_{2}=\frac{2}{3}, \quad \lambda_{3}=1
$$

(b) We want to find coefficients c_{1}, c_{2}, c_{3} such that $\mathbf{w}=c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+c_{3} \mathbf{v}_{3}$. This vector equation is equivalent to the system

$$
\begin{aligned}
c_{1}+c_{2}+c_{3} & =4 \\
-2 c_{2}-2 c_{3} & =0 \\
3 c_{1}-c_{2} & =5
\end{aligned}
$$

The system is easily solved by "unsystematic elimination": The second equation yields $c_{3}=-c_{2}$, and the first equation gives $c_{1}=4$. The last equation tells us that $c_{2}=3 c_{1}-5=7$, and then $c_{3}=-c_{2}=-7$. It follows that

$$
\mathbf{w}=4 \mathbf{v}_{1}+7 \mathbf{v}_{2}-7 \mathbf{v}_{3}
$$

Since the v's are eigenvectors, we have

$$
\mathbf{A} \mathbf{w}=\mathbf{A}\left(4 \mathbf{v}_{1}+7 \mathbf{v}_{2}-7 \mathbf{v}_{3}\right)=4 \lambda_{1} \mathbf{v}_{1}+7 \lambda_{2} \mathbf{v}_{2}-7 \lambda_{3} \mathbf{v}_{3}=7\left(\frac{2}{3}\right) \mathbf{v}_{2}-7 \mathbf{v}_{3}
$$

and, for $n \geq 1$,

$$
\mathbf{A}^{n} \mathbf{w}=4 \lambda_{1}^{n}+7 \lambda_{2}^{n} \mathbf{v}_{2}-7 \lambda_{3}^{n} \mathbf{v}_{3}=7\left(\frac{2}{3}\right)^{n} \mathbf{v}_{2}-7 \mathbf{v}_{3}
$$

Since $\left(\frac{2}{3}\right)^{n} \rightarrow 0$ as $n \rightarrow \infty$, we have

Problem 3

(a) With the Lagrangian

$$
\mathcal{L}(x, y)=-(x-6)^{2}-(y-5)^{2}-\lambda\left(x^{2}+y^{2}-25\right)-\mu(a(x-3)+y-4),
$$

the Kuhn-Tucker conditions are

$$
\begin{aligned}
\mathcal{L}_{1}^{\prime}(x, y) & =-2 x+12-2 \lambda x-a \mu=0 \\
\mathcal{L}_{2}^{\prime}(x, y) & =-2 y+10-2 \lambda y-\mu=0 \\
\lambda & \geq 0, \quad \lambda=0 \text { if } x^{2}+y^{2}<25 \\
\mu & \geq 0, \quad \mu=0 \text { if } a(x-3)+y<4
\end{aligned}
$$

(b) The Lagrangian is concave, so a point that satisfies the Kuhn-Tucker conditions will certainly be optimal. At the point $(3,4)$ both constraints are active, and the Kuhn-Tucker conditions reduce to

$$
\begin{array}{r}
6-6 \lambda-a \mu=0 \\
2-8 \lambda-\quad \mu=0 \\
\lambda \geq 0, \quad \mu \geq 0 \tag{3}
\end{array}
$$

The point $(3,4)$ will be optimal if and only if the equations (1) and (2) give nonnegative values for λ and μ.

We rewrite (1) and (2) as

$$
\begin{align*}
& 6 \lambda+a \mu=6 \tag{4}\\
& 8 \lambda+\mu=2 \tag{5}
\end{align*}
$$

The determinant of this system is $6-8 a$, which is different from 0 as long as $a \neq 3 / 4$. Therefore the system has a unique solution, which turns out to be

$$
\lambda=\frac{a-3}{4 a-3}, \quad \mu=\frac{18}{4 a-3} .
$$

It is now clear that

$$
(\lambda \geq 0 \& \mu \geq 0) \Longleftrightarrow a \geq 3
$$

Hence, the point $(3,4)$ is optimal if and only if $a \geq 3$.
Comment: The constraints are both active at (3,4), and the corresponding gradients there are $(6,8)$ and $(a, 1)$. These gradients are linearly independent if and only if $a \neq 3 / 4$, and therefore the constraint qualification holds at $(3,4)$ whenever $a \neq 3 / 4$. If $a=3 / 4$, the constraint qualification fails. The geometric reason is that the straight line $a(x-3)+4$ then becomes tangent to the circle $x^{2}+y^{2}=25$ at $(3,4)$. It is easy to see, however, that $(3,4)$ is not optimal in this case: The admissible set will be the entire circular disk determined by the first constraint, and the optimal point is the point in the disk that is closest to $(6,5)$, namely the point $(30 / \sqrt{61}, 25 / \sqrt{61})$.)

Problem 4

(a) With the Hamiltonian

$$
H(t, x, u, p)=\left(u x-u^{2}-\frac{1}{4} x^{2}\right) e^{-t}+2 p u
$$

the maximum principle yields the following necessary conditions for an admissible pair $\left(x^{*}, u^{*}\right)$ to be optimal: There must exist a continuous and piecewise differentiable function $p=p(t)$ such that
(1) For each t in $[0, T], u=u^{*}(t)$ must maximize $H\left(t, x^{*}(t), u, p(t)\right)$ for u in \mathbb{R}.
(2) $\dot{p}(t)=-H_{x}^{\prime}\left(t, x^{*}(t), u^{*}(t), p(t)\right)$ for all t in $[0, T]$, except possibly where u^{*} is discontinuous.

There is no transversality condition, because $x(T)$ is fixed.
In the present problem $H(t, x, u, p)$ is differentiable and concave with respect to u, and u can take all real values. Therefore the maximum is attained at a point where $H_{u}^{\prime}=0$. Since

$$
H_{u}^{\prime}(t, x, u, p)=(x-2 u) e^{-t}+2 p
$$

condition (1) reduces to

$$
\begin{equation*}
u^{*}(t)=\frac{1}{2} x^{*}(t)+e^{t} p(t) . \tag{1a}
\end{equation*}
$$

Then (2) implies

$$
\begin{equation*}
\dot{p}(t)=-\left[u^{*}(t)-\frac{1}{2} x^{*}(t)\right] e^{-t}=-p(t) \tag{2a}
\end{equation*}
$$

(b) In general, the maximum principle only gives necessary conditions. But in our case, the Hamiltonian can be written as

$$
H(t, x, u, p)=-\left(u-\frac{1}{2} x\right)^{2} e^{-t}+2 p u
$$

which is obviously concave w.r.t (x, u), and therefore any admissible pair $\left(x^{*}, u^{*}\right)$ that satisfies the conditions in the maximum principle will yield an optimal solution. So let us see what we can find.

From (2a) we get

$$
\begin{equation*}
p(t)=C e^{-t} \tag{3}
\end{equation*}
$$

It then follows from (1a) that $u^{*}(t)-\frac{1}{2} x^{*}(t)=p(t) e^{t}=C$, so $u^{*}(t)=C+\frac{1}{2} x^{*}(t)$. Therefore

$$
\dot{x}^{*}(t)=2 u^{*}(t)=2 C+x^{*}(t) \Longleftrightarrow \dot{x}^{*}(t)-x^{*}(t)=2 C,
$$

with the general solution

$$
\begin{equation*}
x^{*}(t)=A e^{t}-2 C . \tag{4}
\end{equation*}
$$

Hence

$$
\begin{equation*}
u^{*}(t)=\frac{1}{2} \dot{x}^{*}(t)=\frac{1}{2} A e^{t} \tag{5}
\end{equation*}
$$

We now know u^{*}, x^{*} and p, and it only remains to find the constants A and C. The boundary conditions $x(0)=x_{0}$ and $x(T)=x_{T}$ yield the equations $A-2 C=x_{0}$ and $A e^{T}-2 C=x_{T}$. These equations are easily solved to give

$$
A=\frac{x_{T}-x_{0}}{e^{T}-1}, \quad C=\frac{x_{T}-x_{0} e^{T}}{2\left(e^{T}-1\right)}
$$

