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Problem 1

(a) Let f(x, y) = 2x − x2 − y + 2 and g(x, y) = x − y. The equilibrium points
(x, y) are the solutions of the equation system

2x − x2 − y + 2 = 0
x − y = 0

The second equation yields y = x, and then the first equation implies x−x2+2 = 0,
which has the roots x1 = −1, x2 = 2. Thus the equilibrium points are (x1, y1) =
(−1,−1) and (x2, y2) = (2, 2).

The Jacobian matrix of f and g with respect to x and y is

A(x, y) =
(

2 − 2x −1
1 −1

)
.

At the equilibrium points A(x, y) becomes

A1 = A(−1,−1) =
(

4 −1
1 −1

)
, A2 = A(2, 2) =

( −2 −1
1 −1

)
.

We have det(A1) = −3 < 0, so (−1,−1) is a saddle point. The equilibrium point
(2, 2) is locally asymptotically stable, because det(A2) = 3 > 0 and tr(A2) =
−3 < 0.
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(b) The nullclines ẋ = 0 and ẏ = 0 are given by the equations y = 2x − x2 + 2
and y = x, respectively. Figure 1 above shows the nullclines and arrows indicating
the signs of ẋ and ẏ in each of the four regions into which the nullclines divide the
first quadrant of the xy-plane. Figure 2 shows some of the solution paths.

Problem 2

(a) Straightforward matrix multiplication shows that

Av1 = 0 = 0v1 , Av2 = 2
3v2 , Av3 = v3 = 1v3 .

It follows that all the v’s are eigenvectors of A, corresponding to the eigenvalues

λ1 = 0 , λ2 = 2
3 , λ3 = 1 .

(b) We want to find coefficients c1, c2, c3 such that w = c1v1 + c2v2 + c3v3. This
vector equation is equivalent to the system

c1 + c2 + c3 = 4
−2c2 − 2c3 = 0

3c1 − c2 = 5

The system is easily solved by “unsystematic elimination”: The second equation
yields c3 = −c2, and the first equation gives c1 = 4. The last equation tells us
that c2 = 3c1 − 5 = 7, and then c3 = −c2 = −7. It follows that

w = 4v1 + 7v2 − 7v3 .

Since the v’s are eigenvectors, we have

Aw = A(4v1 + 7v2 − 7v3) = 4λ1v1 + 7λ2v2 − 7λ3v3 = 7( 2
3 )v2 − 7v3 ,

and, for n ≥ 1,

Anw = 4λn
1 + 7λn

2v2 − 7λn
3v3 = 7( 2

3 )nv2 − 7v3 .

Since ( 2
3 )n → 0 as n → ∞, we have

lim
n→∞ Anw = −7v3 .

Problem 3

(a) With the Lagrangian

L(x, y) = −(x − 6)2 − (y − 5)2 − λ(x2 + y2 − 25) − μ(a(x − 3) + y − 4) ,

the Kuhn–Tucker conditions are

L′
1(x, y) = −2x + 12 − 2λx − aμ = 0

L′
2(x, y) = −2y + 10 − 2λy − μ = 0

λ ≥ 0, λ = 0 if x2 + y2 < 25
μ ≥ 0, μ = 0 if a(x − 3) + y < 4
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(b) The Lagrangian is concave, so a point that satisfies the Kuhn–Tucker condi-
tions will certainly be optimal. At the point (3, 4) both constraints are active, and
the Kuhn–Tucker conditions reduce to

6 − 6λ − aμ = 0(1)
2 − 8λ − μ = 0(2)

λ ≥ 0, μ ≥ 0(3)

The point (3, 4) will be optimal if and only if the equations (1) and (2) give
nonnegative values for λ and μ.

We rewrite (1) and (2) as

6λ + aμ = 6(4)
8λ + μ = 2(5)

The determinant of this system is 6 − 8a, which is different from 0 as long as
a �= 3/4. Therefore the system has a unique solution, which turns out to be

λ =
a − 3
4a − 3

, μ =
18

4a − 3
.

It is now clear that
(λ ≥ 0 & μ ≥ 0) ⇐⇒ a ≥ 3.

Hence, the point (3, 4) is optimal if and only if a ≥ 3.

Comment: The constraints are both active at (3, 4), and the corresponding gra-
dients there are (6, 8) and (a, 1). These gradients are linearly independent if and
only if a �= 3/4, and therefore the constraint qualification holds at (3, 4) whenever
a �= 3/4. If a = 3/4, the constraint qualification fails. The geometric reason is
that the straight line a(x − 3) + 4 then becomes tangent to the circle x2 + y2 = 25
at (3, 4). It is easy to see, however, that (3, 4) is not optimal in this case: The
admissible set will be the entire circular disk determined by the first constraint,
and the optimal point is the point in the disk that is closest to (6, 5), namely the
point (30/

√
61, 25/

√
61 ).)

Problem 4

(a) With the Hamiltonian

H(t, x, u, p) = (ux − u2 − 1
4x2)e−t + 2pu

the maximum principle yields the following necessary conditions for an admis-
sible pair (x∗, u∗) to be optimal: There must exist a continuous and piecewise
differentiable function p = p(t) such that

(1) For each t in [0, T ], u = u∗(t) must maximize H(t, x∗(t), u, p(t)) for u in R.
(2) ṗ(t) = −H ′

x(t, x∗(t), u∗(t), p(t)) for all t in [0, T ], except possibly where u∗ is
discontinuous.
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There is no transversality condition, because x(T ) is fixed.

In the present problem H(t, x, u, p) is differentiable and concave with respect to
u, and u can take all real values. Therefore the maximum is attained at a point
where H ′

u = 0. Since

H ′
u(t, x, u, p) = (x − 2u)e−t + 2p ,

condition (1) reduces to

(1a) u∗(t) = 1
2x∗(t) + etp(t) .

Then (2) implies

(2a) ṗ(t) = −[
u∗(t) − 1

2x∗(t)
]
e−t = −p(t) .

(b) In general, the maximum principle only gives necessary conditions. But in
our case, the Hamiltonian can be written as

H(t, x, u, p) = −(u − 1
2x)2e−t + 2pu ,

which is obviously concave w.r.t (x, u), and therefore any admissible pair (x∗, u∗)
that satisfies the conditions in the maximum principle will yield an optimal solu-
tion. So let us see what we can find.

From (2a) we get

(3) p(t) = Ce−t .

It then follows from (1a) that u∗(t) − 1
2x∗(t) = p(t)et = C, so u∗(t) = C + 1

2x∗(t) .
Therefore

ẋ∗(t) = 2u∗(t) = 2C + x∗(t) ⇐⇒ ẋ∗(t) − x∗(t) = 2C,

with the general solution

(4) x∗(t) = Aet − 2C .

Hence

(5) u∗(t) = 1
2 ẋ∗(t) = 1

2Aet .

We now know u∗, x∗ and p, and it only remains to find the constants A and C. The
boundary conditions x(0) = x0 and x(T ) = xT yield the equations A − 2C = x0
and AeT − 2C = xT . These equations are easily solved to give

A =
xT − x0

eT − 1
, C =

xT − x0e
T

2(eT − 1)
.
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