ECON4140 / ECON 4145 Mathematics 3

Monday December 8 2008, 09:00-12:00
There are 2 pages of problems to be solved.
All printed and written material may be used, as well as pocket calculators.
Give reasons for all your answers.
Grades given run from A (best) to E for passes, and F for fail.

Problem 1

(a) Consider for each $k \in \mathbf{R}$ the matrices

$$
\mathbf{C}_{k}=\left(\begin{array}{ccc}
k & 2 & k \\
2 & 3 & 0 \\
k & 0 & k
\end{array}\right) \quad \text { and } \quad \mathbf{D}_{k}=\left(\begin{array}{cccc}
k & 2 & k & k \\
2 & 3 & 0 & k+1 \\
k & 0 & k & k e^{k}
\end{array}\right)=\left(\begin{array}{ccc}
& \vdots & k \\
\mathbf{C}_{k} & \vdots & k+1 \\
& \vdots & k e^{k}
\end{array}\right)
$$

Find the rank of \mathbf{C}_{k} and the rank of \mathbf{D}_{k}, and decide for what value(s) of k the equation system $\mathbf{C}_{k}\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{c}k \\ k+1 \\ k e^{k}\end{array}\right)$ has a solution.
(b) For the rest of problem 1, let $\mathbf{A}=\mathbf{C}_{0}=\left(\begin{array}{lll}0 & 2 & 0 \\ 2 & 3 & 0 \\ 0 & 0 & 0\end{array}\right)$.
i) $\lambda_{1}=4$ is an eigenvalue for \mathbf{A}. Find a corresponding eigenvector.
ii) $\left(\begin{array}{c}2 \\ -1 \\ 0\end{array}\right)$ is an eigenvector for \mathbf{A}. Find the corresponding eigenvalue λ_{2}.
iii) Find the third eigenvalue λ_{3} (so that $\lambda_{1} \neq \lambda_{3} \neq \lambda_{2}$) and a corresponding eigenvector.
(c) Let \mathbf{A} be given as in part (b) above.
i) Show that the quadratic form $\left(\begin{array}{lll}x & y & z\end{array}\right) \mathbf{A}\left(\begin{array}{l}x \\ y \\ z\end{array}\right)$ is indefinite.
ii) Decide the definiteness of $\left(\begin{array}{lll}x & y & z\end{array}\right) \mathbf{A}\left(\begin{array}{l}x \\ y \\ z\end{array}\right)$ subject to $\left(\begin{array}{ccc}16 & 0 & 1 \\ 1 & 2 & 0\end{array}\right)\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\mathbf{0}$.
(d) Let \mathbf{A} be given as in part (b) above. Consider the differential equation system

$$
\dot{\mathbf{x}}=\mathbf{A x}
$$

i) Solve the system.
(Hint: If you do not wish to use the results from part (b) above, then solve first for $x_{3}(t)$ and then for $\binom{x_{1}(t)}{x_{2}(t)}$.)
ii) The origin is a saddle point for the system. Let $\left(\begin{array}{c}x_{1}^{*}(t) \\ x_{2}^{*}(t) \\ 0\end{array}\right)$ be a solution curve which converges to the origin. Find $\frac{x_{1}^{*}(t)}{x_{2}^{*}(t)}$ provided that $x_{2}^{*}(t) \neq 0$.

Problem 2 Consider the dynamic programming problem

$$
\begin{array}{r}
\max \sum_{t=0}^{T}\left(e^{x_{t}}+u_{t}\right), \quad \text { where } x_{t+1}=x_{t}-\ln u_{t}, \quad u_{t} \in[1, e] \\
\text { and where } x_{0} \geq T+1 \text { (so that } x_{t} \geq 1 \text { always) }
\end{array}
$$

Let $J_{t}(x)$ be the value function, i.e. the maximal $\sum_{s=t}^{T}\left(e^{x_{s}}+u_{s}\right)$.
(a) Calculate $J_{T-1}(x), J_{T-2}(x)$ and $J_{T-3}(x)$.
(Hint: Show that $u_{T-1}^{*}=u_{T-2}^{*}=u_{T-3}^{*}=1$ is optimal. If you do not manage to show this, then use it nevertheless for partial score.)
(b) Show that for each $t=0,1, \ldots, T-1, T$, the value function is of the form $J_{t}(x)=$ $A_{t} e^{x}+B_{t}$, where $A_{t} \geq 1$.

Problem 3 Consider the optimal control problem

$$
\max \int_{0}^{30} u x^{2} d t, \quad \text { where } \dot{x}=u \in[-5,-2], \quad x(0)=60, \quad x(30) \geq-90
$$

(a) State the necessary conditions from the maximum principle.
(b) Show that for the optimal $x^{*}(t)$ we have

$$
\left(x^{*}(t)\right)^{2}=-p(t)
$$

where p is the adjoint (costate) from the maximum principle.
(Hint: Put $\alpha(t)=p(t)+p_{0}\left(x^{*}(t)\right)^{2}$ and calculate $\dot{\alpha}$. Then show that $\alpha>0$ is impossible, and that $\alpha<0$ is impossible. With $\alpha=0$, can then $p_{0}=0$?)
(c) Find an approximate change in optimal value obtained by replacing the initial condition by $x(0)=61$. You can take for granted that the value function is differentiable.
(Hint: You are not supposed to solve the optimal control problem.)

