ECON 4140 / ECON 4145 fall 2008: The exam solved

Problem 1

(a) $\left|\mathbf{C}_{k}\right|=k \cdot(-3 k+3 k-4)=-4 k$, so that for $k \neq 0$, both \mathbf{C}_{k} and \mathbf{D}_{k} have rank three. For $k=0$ the upper-left 2×2 minor $\left|\begin{array}{ll}0 & 2 \\ 2 & 3\end{array}\right|$ is nonzero, while - by the zero row - any 3×3 minor is zero. So the ranks are equal for each k, and

For $k \neq 0$, both \mathbf{C}_{k} and \mathbf{D}_{k} have rank 3.
For $k=0$, both \mathbf{C}_{k} and \mathbf{D}_{k} have rank 2 .
The equation system always has a solution.
(b) i) $\lambda_{1}=4$ is an eigenvalue for \mathbf{A}. A corresponding eigenvector is one that solves

$$
\left(\begin{array}{ccc}
-4 & 2 & 0 \\
2 & -1 & 0 \\
0 & 0 & -4
\end{array}\right)\left(\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right)=\mathbf{0}
$$

$v_{3}=0$ and the two first rows are proportional; putting $v_{1}=\theta_{1}$, we get $v_{2}=2 \theta_{1}$ so that an eigenvector will be e.g.

$$
\left(\begin{array}{l}
1 \\
2 \\
0
\end{array}\right)
$$

(or any nonzero scalar multiple.)
ii) Direct calculation yields $\mathbf{A}(2,-1,0)^{\prime}=(-2,1,0)^{\prime}=(-1)(2,-1,0)^{\prime}$ so that the vector is an eigenvector with corresponding eigenvalue

$$
\lambda_{2}=-1 .
$$

iii) From part (a), we know that $|\mathbf{A}|=0$, so zero is an eigenvalue. A corresponding eigenvector is one which solves $\mathbf{A}\left(w_{1}, w_{2}, w_{3}\right)^{\prime}=\mathbf{0}$, from which we see that $w_{1}=0$, hence $w_{2}=0$ while w_{3} is free. So the eigenvalue is

$$
\lambda_{3}=0 \text { with corresponding eigenvector }\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)
$$

(where any scalar multiple of $(0,0,1)^{\prime}$ is also an eigenvector.)
(c) i) Using the eigenvalues from part (b) above, we have $\lambda_{1}>0>\lambda_{2}$, so the quadratic form is indefinite, Q.E.D.
ii) Consider the bordered matrix $\mathbf{M}=\left(\begin{array}{cccc}\mathbf{0} & 16 & 0 & 1 \\ 16 & 1 & 1 & 2 \\ 0 \\ 0 & 2 & & \mathbf{A} \\ 1 & 0 & & \end{array}\right)$. With two constraints (composed of linearly independent vectors, but this linear dependence will follow from the calculations), we only need consider minors of order >4, i.e. only $|\mathbf{M}|$ itself. Cofactor expansion along the last row gives

$$
|\mathbf{M}|=\left|\begin{array}{cccc}
0 & 16 & 0 & 1 \\
0 & 1 & 2 & 0 \\
1 & 0 & 2 & 0 \\
2 & 2 & 3 & 0
\end{array}\right|=-\left|\begin{array}{lll}
0 & 1 & 2 \\
1 & 0 & 2 \\
2 & 2 & 3
\end{array}\right|=\left|\begin{array}{ll}
1 & 2 \\
2 & 3
\end{array}\right|-2\left|\begin{array}{cc}
1 & 0 \\
2 & 2
\end{array}\right|=-1-4<0 .
$$

So $(-1)^{3}|\mathbf{M}|>0$, and
the quadratic form is negative definite subject to the constraint.
(d) i) From part (b), using the eigenvalues and eigenvectors, we get that the solution can be represented as

$$
\mathbf{x}(t)=C_{1} e^{4 t}\left(\begin{array}{l}
1 \\
2 \\
0
\end{array}\right)+C_{2} e^{-t}\left(\begin{array}{c}
2 \\
-1 \\
0
\end{array}\right)+C_{3}\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)
$$

for arbitrary constants C_{1}, C_{2} and C_{3}.
ii) A solution curve converging to the origin must have $C_{1}=C_{3}=0$. Then

$$
\frac{x_{1}^{*}(t)}{x_{2}^{*}(t)}=\frac{2 C_{2} e^{-t}}{-C_{2} e^{-t}}=-2
$$

provided that $x_{2}^{*}(t) \neq 0$.

Problem 2

(a) We have $J_{T}(x)=\max _{u \in[1, e]}\left\{e^{x}+u\right\}=e^{x}+e$. Then

$$
\begin{aligned}
J_{T-1}(x) & =\max _{u \in[1, e]}\left\{e^{x}+u+J_{T}(x-\ln u)\right\} \\
& =\max _{u \in[1, e]}\left\{e^{x}+u+e^{x-\ln u}+e\right\} \\
& =e^{x}+e+\max _{u \in[1, e]} \underbrace{\left\{u+\frac{e^{x}}{u}\right\}}_{\text {convex in } u}
\end{aligned}
$$

so that the optimal u^{*} is either 1 or $e .1$ is optimal if and only if

$$
1+\frac{e^{x}}{1} \geq e+\frac{e^{x}}{e} \quad \text { which } \Leftrightarrow \quad e^{x} \geq \frac{e-1}{1-e^{-1}}=e
$$

which is true for all $x \geq 1$ (and J_{T-1} is undefined for $x<1$). So

$$
\begin{aligned}
J_{T-1}(x) & =e^{x}+e+1+e^{x} \\
& =2 e^{x}+1+e
\end{aligned}
$$

Proceeding analogously, we have

$$
J_{T-2}(x)=e^{x}+1+e+\max _{u \in[1, e]} \underbrace{\left\{u+\frac{2 e^{x}}{u}\right\}}_{\text {convex in } u}
$$

and as above, $u^{*}=1$ is optimal if and only if

$$
1+\frac{2 e^{x}}{1} \geq e+\frac{2 e^{x}}{e} \quad \text { which } \Leftrightarrow \quad 2 e^{x} \geq e
$$

which is true, so

$$
\begin{aligned}
J_{T-2}(x) & =e^{x}+1+e+2 e^{x}+1 \\
& =3 e^{x}+2+e
\end{aligned}
$$

Analogously we have

$$
J_{T-3}(x)=e^{x}+2+e+\max _{u \in[1, e]} \underbrace{\left\{u+\frac{3 e^{x}}{u}\right\}}_{\text {convex in } u}
$$

and as above, $u^{*}=1$ is optimal because for all $x \geq 1$ we have $1+\frac{2 e^{x}}{1} \geq e$, so that

$$
\begin{aligned}
J_{T-3}(x) & =e^{x}+2+e+3 e^{x}+1 \\
& =4 e^{x}+3+e
\end{aligned}
$$

(b) For $t=T$, we have $J_{T}(x)=e^{x}+\max _{u \in[1, e]} u=e^{x}+e$, which satisfies the requested form (with $A_{T}=1$ and $B_{T}=u_{T}^{*}=e$). So assume the given form applies for J_{t}, where $t \in\{1, \ldots, T\}$ is arbitrary. Then for $t-1$ we have

$$
\begin{aligned}
J_{t-1}(x) & =e^{x}+\max _{u \in[0,1]}\left\{u+J_{t}(x-\ln u)\right\} \\
& =e^{x}+\max _{u \in[0,1]}\left\{u+A_{t} e^{x-\ln u}+B_{t}\right\} \\
& =e^{x}+B_{t}+\max _{u \in[0,1]}\left\{u+\frac{1}{u} A_{t} e^{x}\right\} .
\end{aligned}
$$

By assumption, $A_{t} \geq 1$ so that the braced expression is convex in u, and hence maximized by an endpoint. $u=1$ gives $1+A_{t} e^{x}$ while $u=e$ gives $e+\frac{1}{e} A_{t} e^{x}$. The former is maximal if

$$
e+e A_{t} e^{x} \geq e^{2}+A_{t} e^{x} \quad \Leftrightarrow \quad(e-1) A_{t} e^{x} \geq(e-1) e \quad \Leftrightarrow \quad A_{t} e^{x} \geq e
$$

which is always true, since $x \geq 1$ (given in the problem) and $A_{t} \geq 1$ by the induction hypothesis. So for all $t<T$, it is optimal to choose $u_{t}^{*}=1$, and we obtain

$$
J_{t-1}(x)=e^{x}+B_{t}+1+A_{t} e^{x}=\left(A_{t}+1\right) e^{x}+B_{t}+1
$$

so that $A_{t-1}=A_{t}+1 \geq 1$. The proof is complete.

Problem 3

(a) With $H(t, x, u, p)=p_{0} u x^{2}+p u$, the maximum principle gives the conditions that

$$
\begin{aligned}
& u^{*} \text { maximizes } u \cdot\left(p_{0} x^{2}+p\right) \quad\left(\text { so that } u^{*}=\left\{\begin{array}{ll}
-2 & \text { if } p_{0}\left(x^{*}\right)^{2}+p>0 \\
-5 & \text { if } p_{0}\left(x^{*}\right)^{2}+p<0
\end{array}\right)\right. \\
& p \text { satisfies } \dot{p}=-2 p_{0} u^{*} x^{*} \text {, with the transversality condition } \\
& p(30) \geq 0 \text { (and } p(30)=0 \text { if } x(30)>90) \\
& \left.p_{0}=0 \text { or } p_{0}=1 \text { (and } p_{0}=1 \text { if } p(t)=0 \text { for some } t\right) .
\end{aligned}
$$

(b) From the hint, we get $\dot{\alpha}=\dot{p}+2 p_{0} x \dot{x}=0$. So α is a constant A. Evaluating at T yields $A=\alpha(T)=p(T)+p_{0}\left(x^{*}(T)\right)^{2}$ which is ≥ 0 by the transversality condition, so $A \geq 0$. Assume for contradiction that $A>0$. Then $u^{*}=-2$ always, so that $x(T)=x(0)-60=$ 0 which is >-90 so that $p(T)=0$ implying $A=0$.
So $p_{0} x^{*}(t)^{2}+p(t)=0$ for all t. We cannot have $p_{0}=0$, because that implies $p=0$ too. So $p_{0}=1$ and we have $x^{*}(t)^{2}=-p(t)$, Q.E.D.
(c) A unit increase in initial state is approx. equal to the derivative of the value function with respect to initial state, which equals $p(0)$, which by part (b) is

$$
p(0)=-\left(x^{*}(0)\right)^{2}=-60^{2}=-3600
$$

