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Problem 1

(a) The symmetric matrix associated with Q is

A =

⎛
⎝ 1 a 1

a 1 1
1 1 1

⎞
⎠ .

The leading principal minors of A are

D1 = 1, D2 =
∣∣∣∣ 1 a
a 1

∣∣∣∣ = 1 − a2, D3 =

∣∣∣∣∣∣
1 a 1
a 1 1
1 1 1

∣∣∣∣∣∣ = −(a − 1)2 .

Since D3 ≤ 0 for all a, the quadratic form Q is not positive definite for any value
of a.

(b) Q is positive semidefinite if and only if all principal minors of A are nonneg-
ative. If a �= 1, then D3 < 0, so Q cannot be positive semidefinite. But if a = 1,
then all minors of order 1 (not just the principal ones) are equal to 1 and all minors
of order greater than 1 are 0 because all the rows of A are equal. So in this case
Q is positive semidefinite.

(c) The characteristic polynomial of A is

p(λ) =

∣∣∣∣∣∣
1 − λ 1 1

1 1 − λ 1
1 1 1 − λ

∣∣∣∣∣∣
= (1 − λ)

∣∣∣∣ 1 − λ 1
1 1 − λ

∣∣∣∣ − 1
∣∣∣∣ 1 1
1 1 − λ

∣∣∣∣ + 1
∣∣∣∣ 1 1 − λ
1 1

∣∣∣∣
= −λ3 + 3λ2 = λ2(3 − λ)

by cofactor expansion along the top row of the matrix. The eigenvalues of A are
the roots of the equation p(λ) = 0, so we get

λ1 = 3 , λ2 = λ3 = 0 .

Problem 2

(a) Equilibrium points are where ẋ = ẏ = 0, i.e. where

(i) y = x , (ii) y = −2x − 1
4x3.
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If we substitute x for y in (ii), we get

x = −2x − 1
4x3 ⇐⇒ 3x + 1

4x3 = 0 ⇐⇒ x(3 + 1
4x2) = 0 .

The last equation obviously has only the solution x = 0, and therefore (0, 0) is the
only equilibrium point for the given system.

The Jacobian matrix of the system at a point (x, y) is

J(x, y) =
( −1 1

1 + 3
8x2 1

2

)
.

In particular the Jacobian at (0, 0) is

A = J(0, 0) =
( −1 1

1 1
2

)
.

The determinant of A is
∣∣∣∣ −1 1

1 1
2

∣∣∣∣ = −3/2 < 0, so (0, 0) must be a saddle point.

(b) The characteristic polynomial of A is

p(λ) =
∣∣∣∣ −1 − λ 1

1 1
2 − λ

∣∣∣∣ = λ2 + 1
2λ − 3

2 .

The eigenvalues of A are the solutions of the equation p(λ) = 0, so we get λ1 =
−3/2 and λ2 = 1. The eigenvectors w = (u, v)′ corresponding to λ1 are the
nonzero solutions of Aw = − 3

2w, that is,

−u + v = − 3
2u

u + 1
2v = − 3

2v
⇐⇒

1
2u + v = 0
u + 2v = 0

⇐⇒ u = −2v .

One such eigenvector is (2, −1)′.

y

−3

−2

−1

1

2

3

x−5 −4 −3 −2 −1 1 2 3 4

ẏ = 0

ẋ = 0

2
m3xh09f 20.12.2009 1305



(c) The figure shows a phase diagram with some solution curves. The nullclines
are shown as dashed curves, and the solutions converging to the equilibrium point
are shown with heavier curves.

Problem 3

(a) With F (t, x, ẋ) = (100 − x2 − ẋ2 + x − 3ẋ + 2xẋ)e2t we get

F ′
x(t, x, ẋ) = (−2x + 1 + 2ẋ)e2t,

F ′
ẋ(t, x, ẋ) = (−2ẋ − 3 + 2x)e2t,

and
d

dt

(
F ′

ẋ(t, x, ẋ)
)

= · · · = (−2ẍ − 2ẋ + 4x − 6)e2t

The Euler equation is therefore

F ′
x(t, x, ẋ) − d

dt

(
F ′

ẋ(t, x, ẋ)
)

= 0

⇐⇒ −2x + 1 + 2ẋ − (−2ẍ − 2ẋ + 4x − 6) = 0
⇐⇒ ẍ + 2ẋ − 3x = −7/2 (∗)

(b) The characteristic equation is r2 +2r −3 = 0, with the roots r1 = 1, r2 = −3.
Thus the general solution of the homogeneous equation ẍ + 2ẋ − 3x = 0 is x =
Aet + Be−3t, where A and B are arbitrary constants. To find the general solution
of (∗) we need a particular solution u∗. Since the right-hand side is a constant we
try with a constant function u∗ and find u∗ = (−7/2)/(−3) = 7/6. Hence, the
general solution of (∗) is

x = Aet + Be−3t + 7/6 .

Problem 4

(a) The Hamiltonian is

H(t, x, u, p) = 2tx − 3u + pu = 2tx + (p − 3)u .

If (x∗, u∗) is an optimal pair there must exist a continuous and piecewise C1

function p such that

(i) for each t in [0, T ], u = u∗(t) maximizes

H(t, x∗(t), u, p(t)) = 2tx∗(t) + (p(t) − 3)u

for u in [0, 1];

(ii) ṗ(t) = −H ′
x(t, x∗(t), u, p(t)) = −2t for each t in [0, T ] (except possibly where

u∗ is discontinuous).

There are no transversality conditions because the terminal value of x∗ is given.
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(b) Condition (ii) above implies that ṗ(t) = −2t for all t in [0, T ] (even at points
where u∗ is discontinuous). Therefore

p(t) = A − t2 for some constant A.

Note that p is strictly decreasing.
From condition (i) we get

u∗(t) =
{

1 if p(t) > 3,
0 if p(t) < 3.

We cannot have u∗(t) = 1 for all t, because that would imply x∗(t) ≡ x0 + t and
then x∗(T ) = x0 + T > xT .

Similarly u∗ cannot be identically 0, because then x∗(t) ≡ x0 and we would
have x∗(T ) = x0 < xT .

It follows that there must exist a t∗ in (0, T ) with p(t∗) = 3 and

u∗(t) =
{

1 if t ≤ t∗,
0 if t > t∗.

Then

x∗(t) =
{

x0 + t if t ≤ t∗,
x0 + t∗ if t > t∗.

To determine t∗ we use the condition x∗(T ) = xT , which gives x0 + t∗ = xT , so

t∗ = xT − x0 .

Finally, the constant A in p(t) is determined by p(t∗) = A − (t∗)2 = 3, so A =
3 + (t∗)2, and

p(t) = 3 + (t∗)2 − t2.

(c) The value function is

V (x0, xT , T ) =
∫ T

0
(2tx∗(t) − 3u∗(t)) dt

=
∫ t∗

0
(2t(x0 + t) − 3) dt +

∫ T

t∗
2txT dt

= (· · ·) +
T

t∗
xT t2 = (· · ·) + (T 2 − (t∗)2)xT .

Note that t∗ is independent of T . Therefore the integral over the interval [0, t∗]
is also independent of T and does not influence the partial derivative ∂V/∂T . (A
little calculation shows that the integral over the entire interval [0, T ] is equal to
− 1

3 (t∗)3 − 3t∗ + T 2xT .) We get ∂V/∂T = 2TxT .
Direct evaluation of H∗ yields

H∗(T ) = H(T, x∗(T ), u∗(T ), p(T )) = 2Tx∗(T ) − 3u∗(T ) + p(T )u∗(T )
= 2TxT − 0 + 0 = 2TxT .

Thus, the equation ∂V/∂T = H∗(T ) is verified.

4
m3xh09f 20.12.2009 1305


