Solutions of the examination problems in ECON4140/4145 Mathematics 3, 9 December 2009

Problem 1

(a) The symmetric matrix associated with Q is

$$
\mathbf{A}=\left(\begin{array}{lll}
1 & a & 1 \\
a & 1 & 1 \\
1 & 1 & 1
\end{array}\right)
$$

The leading principal minors of \mathbf{A} are

$$
D_{1}=1, \quad D_{2}=\left|\begin{array}{cc}
1 & a \\
a & 1
\end{array}\right|=1-a^{2}, \quad D_{3}=\left|\begin{array}{ccc}
1 & a & 1 \\
a & 1 & 1 \\
1 & 1 & 1
\end{array}\right|=-(a-1)^{2}
$$

Since $D_{3} \leq 0$ for all a, the quadratic form Q is not positive definite for any value of a.
(b) Q is positive semidefinite if and only if all principal minors of \mathbf{A} are nonnegative. If $a \neq 1$, then $D_{3}<0$, so Q cannot be positive semidefinite. But if $a=1$, then all minors of order 1 (not just the principal ones) are equal to 1 and all minors of order greater than 1 are 0 because all the rows of \mathbf{A} are equal. So in this case Q is positive semidefinite.
(c) The characteristic polynomial of \mathbf{A} is

$$
\begin{aligned}
p(\lambda) & =\left|\begin{array}{ccc}
1-\lambda & 1 & 1 \\
1 & 1-\lambda & 1 \\
1 & 1 & 1-\lambda
\end{array}\right| \\
& =(1-\lambda)\left|\begin{array}{cc}
1-\lambda & 1 \\
1 & 1-\lambda
\end{array}\right|-1\left|\begin{array}{cc}
1 & 1 \\
1 & 1-\lambda
\end{array}\right|+1\left|\begin{array}{cc}
1 & 1-\lambda \\
1 & 1
\end{array}\right| \\
& =-\lambda^{3}+3 \lambda^{2}=\lambda^{2}(3-\lambda)
\end{aligned}
$$

by cofactor expansion along the top row of the matrix. The eigenvalues of \mathbf{A} are the roots of the equation $p(\lambda)=0$, so we get

$$
\lambda_{1}=3, \quad \lambda_{2}=\lambda_{3}=0
$$

Problem 2

(a) Equilibrium points are where $\dot{x}=\dot{y}=0$, i.e. where

$$
\text { (i) } \quad y=x, \quad \text { (ii) } \quad y=-2 x-\frac{1}{4} x^{3} \text {. }
$$

If we substitute x for y in (ii), we get

$$
x=-2 x-\frac{1}{4} x^{3} \Longleftrightarrow 3 x+\frac{1}{4} x^{3}=0 \Longleftrightarrow x\left(3+\frac{1}{4} x^{2}\right)=0 .
$$

The last equation obviously has only the solution $x=0$, and therefore $(0,0)$ is the only equilibrium point for the given system.

The Jacobian matrix of the system at a point (x, y) is

$$
\mathbf{J}(x, y)=\left(\begin{array}{cc}
-1 & 1 \\
1+\frac{3}{8} x^{2} & \frac{1}{2}
\end{array}\right)
$$

In particular the Jacobian at $(0,0)$ is

$$
\mathbf{A}=\mathbf{J}(0,0)=\left(\begin{array}{rr}
-1 & 1 \\
1 & \frac{1}{2}
\end{array}\right)
$$

The determinant of \mathbf{A} is $\left|\begin{array}{rr}-1 & 1 \\ 1 & \frac{1}{2}\end{array}\right|=-3 / 2<0$, so $(0,0)$ must be a saddle point.
(b) The characteristic polynomial of \mathbf{A} is

$$
p(\lambda)=\left|\begin{array}{cc}
-1-\lambda & 1 \\
1 & \frac{1}{2}-\lambda
\end{array}\right|=\lambda^{2}+\frac{1}{2} \lambda-\frac{3}{2} .
$$

The eigenvalues of \mathbf{A} are the solutions of the equation $p(\lambda)=0$, so we get $\lambda_{1}=$ $-3 / 2$ and $\lambda_{2}=1$. The eigenvectors $\mathbf{w}=(u, v)^{\prime}$ corresponding to λ_{1} are the nonzero solutions of $\mathbf{A w}=-\frac{3}{2} \mathbf{w}$, that is,

$$
\begin{aligned}
-u+v & =-\frac{3}{2} u \\
u+\frac{1}{2} v & =-\frac{3}{2} v
\end{aligned} \quad \Longleftrightarrow \quad \begin{aligned}
\frac{1}{2} u+v & =0 \\
u+2 v & =0
\end{aligned} \quad \Longleftrightarrow \quad u=-2 v .
$$

One such eigenvector is $(2,-1)^{\prime}$.

(c) The figure shows a phase diagram with some solution curves. The nullclines are shown as dashed curves, and the solutions converging to the equilibrium point are shown with heavier curves.

Problem 3

(a) With $F(t, x, \dot{x})=\left(100-x^{2}-\dot{x}^{2}+x-3 \dot{x}+2 x \dot{x}\right) e^{2 t}$ we get

$$
\begin{aligned}
F_{x}^{\prime}(t, x, \dot{x}) & =(-2 x+1+2 \dot{x}) e^{2 t} \\
F_{\dot{\dot{x}}}^{\prime}(t, x, \dot{x}) & =(-2 \dot{x}-3+2 x) e^{2 t}
\end{aligned}
$$

and

$$
\frac{d}{d t}\left(F_{\dot{x}}^{\prime}(t, x, \dot{x})\right)=\cdots=(-2 \ddot{x}-2 \dot{x}+4 x-6) e^{2 t}
$$

The Euler equation is therefore

$$
\begin{gather*}
F_{x}^{\prime}(t, x, \dot{x})-\frac{d}{d t}\left(F_{\dot{x}}^{\prime}(t, x, \dot{x})\right)=0 \\
\Longleftrightarrow-2 x+1+2 \dot{x}-(-2 \ddot{x}-2 \dot{x}+4 x-6)=0 \\
\Longleftrightarrow \ddot{x}+2 \dot{x}-3 x=-7 / 2 \tag{*}
\end{gather*}
$$

(b) The characteristic equation is $r^{2}+2 r-3=0$, with the roots $r_{1}=1, r_{2}=-3$. Thus the general solution of the homogeneous equation $\ddot{x}+2 \dot{x}-3 x=0$ is $x=$ $A e^{t}+B e^{-3 t}$, where A and B are arbitrary constants. To find the general solution of $(*)$ we need a particular solution u^{*}. Since the right-hand side is a constant we try with a constant function u^{*} and find $u^{*}=(-7 / 2) /(-3)=7 / 6$. Hence, the general solution of $(*)$ is

$$
x=A e^{t}+B e^{-3 t}+7 / 6
$$

Problem 4

(a) The Hamiltonian is

$$
H(t, x, u, p)=2 t x-3 u+p u=2 t x+(p-3) u
$$

If $\left(x^{*}, u^{*}\right)$ is an optimal pair there must exist a continuous and piecewise C^{1} function p such that
(i) for each t in $[0, T], u=u^{*}(t)$ maximizes

$$
H\left(t, x^{*}(t), u, p(t)\right)=2 t x^{*}(t)+(p(t)-3) u
$$

for u in $[0,1]$;
(ii) $\dot{p}(t)=-H_{x}^{\prime}\left(t, x^{*}(t), u, p(t)\right)=-2 t$ for each t in $[0, T]$ (except possibly where u^{*} is discontinuous).
There are no transversality conditions because the terminal value of x^{*} is given.
(b) Condition (ii) above implies that $\dot{p}(t)=-2 t$ for all t in $[0, T]$ (even at points where u^{*} is discontinuous). Therefore

$$
p(t)=A-t^{2} \quad \text { for some constant } A
$$

Note that p is strictly decreasing.
From condition (i) we get

$$
u^{*}(t)= \begin{cases}1 & \text { if } p(t)>3 \\ 0 & \text { if } p(t)<3\end{cases}
$$

We cannot have $u^{*}(t)=1$ for all t, because that would imply $x^{*}(t) \equiv x_{0}+t$ and then $x^{*}(T)=x_{0}+T>x_{T}$.

Similarly u^{*} cannot be identically 0 , because then $x^{*}(t) \equiv x_{0}$ and we would have $x^{*}(T)=x_{0}<x_{T}$.

It follows that there must exist a t^{*} in $(0, T)$ with $p\left(t^{*}\right)=3$ and

$$
u^{*}(t)= \begin{cases}1 & \text { if } t \leq t^{*} \\ 0 & \text { if } t>t^{*}\end{cases}
$$

Then

$$
x^{*}(t)= \begin{cases}x_{0}+t & \text { if } t \leq t^{*} \\ x_{0}+t^{*} & \text { if } t>t^{*}\end{cases}
$$

To determine t^{*} we use the condition $x^{*}(T)=x_{T}$, which gives $x_{0}+t^{*}=x_{T}$, so

$$
t^{*}=x_{T}-x_{0}
$$

Finally, the constant A in $p(t)$ is determined by $p\left(t^{*}\right)=A-\left(t^{*}\right)^{2}=3$, so $A=$ $3+\left(t^{*}\right)^{2}$, and

$$
p(t)=3+\left(t^{*}\right)^{2}-t^{2}
$$

(c) The value function is

$$
\begin{aligned}
V\left(x_{0}, x_{T}, T\right) & =\int_{0}^{T}\left(2 t x^{*}(t)-3 u^{*}(t)\right) d t \\
& =\int_{0}^{t^{*}}\left(2 t\left(x_{0}+t\right)-3\right) d t+\int_{t^{*}}^{T} 2 t x_{T} d t \\
& =(\cdots)+\left.\right|_{t^{*}} ^{T} x_{T} t^{2}=(\cdots)+\left(T^{2}-\left(t^{*}\right)^{2}\right) x_{T}
\end{aligned}
$$

Note that t^{*} is independent of T. Therefore the integral over the interval $\left[0, t^{*}\right]$ is also independent of T and does not influence the partial derivative $\partial V / \partial T$. (A little calculation shows that the integral over the entire interval $[0, T]$ is equal to $-\frac{1}{3}\left(t^{*}\right)^{3}-3 t^{*}+T^{2} x_{T}$.) We get $\partial V / \partial T=2 T x_{T}$.

Direct evaluation of H^{*} yields

$$
\begin{aligned}
H^{*}(T)=H\left(T, x^{*}(T), u^{*}(T), p(T)\right) & =2 T x^{*}(T)-3 u^{*}(T)+p(T) u^{*}(T) \\
& =2 T x_{T}-0+0=2 T x_{T}
\end{aligned}
$$

Thus, the equation $\partial V / \partial T=H^{*}(T)$ is verified.

