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Problem 1

(a) The symmetric matrix associated with @ is

1 a 1
A=]a 1 1
1 1 1

The leading principal minors of A are

1 a 1 a 1
Dy =1, Dy= a]_zl—a% Ds=|a 1 1|=—(a—1)>%.
11 1

Since D3 < 0 for all a, the quadratic form @ is not positive definite for any value
of a.

(b) @ is positive semidefinite if and only if all principal minors of A are nonneg-
ative. If a # 1, then D3 < 0, so () cannot be positive semidefinite. But if a = 1,
then all minors of order 1 (not just the principal ones) are equal to 1 and all minors
of order greater than 1 are 0 because all the rows of A are equal. So in this case
() is positive semidefinite.

(c) The characteristic polynomial of A is

- 11
p(A) =] 1 1—A 1
11—
-\ 1 11 1 1-2)
B R T _1L 1—A’+41 1

=N H3N2 =23 -

by cofactor expansion along the top row of the matrix. The eigenvalues of A are
the roots of the equation p(A) = 0, so we get

A =3, Ay =Xx3=0.
Problem 2

(a) Equilibrium points are where & =y = 0, i.e. where

. .. 1.3
(i) y==, (i) y=—2x— 32"
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If we substitute x for y in (ii), we get

r=-22—12 < 3r+12°=0 < 23+ 32°)=0.

The last equation obviously has only the solution x = 0, and therefore (0, 0) is the
only equilibrium point for the given system.
The Jacobian matrix of the system at a point (z,y) is

In particular the Jacobian at (0,0) is

A =J(0,0) = (_1 1).

—1

1+%x2

J(x,y)z(

M= =

N[ +—

The determinant of A is = —3/2 <0, so (0,0) must be a saddle point.

1

2

(b) The characteristic polynomial of A is
—1-A 1
\) =
p(A) ‘ L1 /\‘
The eigenvalues of A are the solutions of the equation p(A) = 0, so we get A\; =
—3/2 and Ay = 1. The eigenvectors w = (u,v)" corresponding to A; are the

nonzero solutions of Aw = —%W, that is,
—u+ v=—3u fut+ v=0
) 3 — — u=-2
U+ 50=-35v u+2v=0

One such eigenvector is (2, —1)".
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(c) The figure shows a phase diagram with some solution curves. The nullclines
are shown as dashed curves, and the solutions converging to the equilibrium point
are shown with heavier curves.

Problem 3
(a) With F(t,z,%) = (100 — 2% — 3% + x — 3% + 2xd)e?" we get

Fl(t,z, %) = (=22 + 1 + 2i)e?,
(t,x,2) = (—2& — 3 + 2x)e*,
and

—(Fy(t,x,&)) = -+ = (=2F — 20 + 4z — 6)e?
The Euler equation is therefore

Fl(ta, ) — L (FU(t2,8)) =0

dt
= 2o 4142 —(—2&—2&+4x—6)=0
= E+2¢—3x=-7/2 (%)

(b) The characteristic equation is 7%+ 2r —3 = 0, with the roots 71 = 1, ry = —3.
Thus the general solution of the homogeneous equation & 4+ 22 — 3x = 0 is x =
Aet + Be™3! where A and B are arbitrary constants. To find the general solution
of (x) we need a particular solution u*. Since the right-hand side is a constant we
try with a constant function «* and find u* = (-=7/2)/(—3) = 7/6. Hence, the
general solution of () is

= Ae' + Be ' 4 7/6.

Problem 4
(a) The Hamiltonian is
H(t,z,u,p) =2tx —3u+pu =2tx + (p — 3)u.
If (z*,u*) is an optimal pair there must exist a continuous and piecewise C!

function p such that

(i) for each ¢ in [0,7], v = u*(t) maximizes
H{(t, 2™ (1), u, p(t)) = 2tz™(t) + (p(t) = 3)u

for w in [0, 1];
(ii) p(t) = —HL(t,z*(t),u,p(t)) = —2t for each t in [0,T] (except possibly where

u* is discontinuous).

There are no transversality conditions because the terminal value of z* is given.
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(b) Condition (ii) above implies that p(t) = —2¢ for all ¢ in [0, 7] (even at points
where u* is discontinuous). Therefore

p(t) = A—t* for some constant A.

Note that p is strictly decreasing.
From condition (i) we get

w1 ifp(t) >3,
u(t)_{o it p(t) < 3.

We cannot have u*(¢t) = 1 for all ¢, because that would imply z*(¢) = z¢ + t and
then 2*(T) =29 + T > 7.

Similarly u* cannot be identically 0, because then z*(t) = z¢ and we would
have z*(T) = z¢ < x.

It follows that there must exist a t* in (0,7") with p(t*) = 3 and

1 ift <t*
u*(t):{ =t

0 ift>t*.
Then
. {930—}—75 if t < t*,
z7(t) = )
To+t* ift > t*.

To determine t* we use the condition x*(T') = x, which gives zg + t* = zp, so
t" =x7 — 0.

Finally, the constant A in p(t) is determined by p(t*) = A — (t*)? = 3, s0 A =
3+ (t*)?%, and
p(t) =3+ (t*)? — 2

(¢) The value function is

T
V(zg,zp,T) = /0 (2tx™(t) — 3u™(t)) dt

t* T
0 t

*

T

= ( . ) + $Tt2 _ ( . ) + (T2 . (t*)z)xT.

t*

Note that t* is independent of T'. Therefore the integral over the interval [0, ¢*]
is also independent of T" and does not influence the partial derivative OV/0T. (A
little calculation shows that the integral over the entire interval [0, 7] is equal to
—3(t*)3 = 3t* + T?wp.) We get OV/OT = 2T xr.
Direct evaluation of H* yields
HY(T) = H(T,2*(T),u™(T),p(T)) = 2Tx™(T) — 3u™(T) + p(T)u"(T)
= 2TQ}'T —04+0= 2T£IZT

Thus, the equation 0V/0T = H*(T) is verified.
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