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Problem 1

(a) Direct matrix multiplication shows that Av = −v. Hence v is an eigenvector
corresponding to the eigenvalue λ1 = −1.

(b) The characteristic polynomial p(λ) = |A− λI| is a cubic polynomial with the
eigenvalues of A as zeros. Since p(−1) = 0, the linear polynomial λ− (−1) = λ+1
is a factor in p(λ). The leading term in p(λ) is −λ3, so p(λ) = −(λ+1)(λ2+aλ+b)
for suitable a and b.

To find the values of a and b (which is not really necessary for this part of the
problem) we calculate the characteristic polynomial

p(λ) =

∣∣∣∣∣∣
1 − λ −2 −2
−1 1 − λ 0
−1 0 1 − λ

∣∣∣∣∣∣ = −λ3 + 3λ2 + λ − 3 ,

for example by cofactor expansion along the bottom row or along the third column.
Then

−λ3 + 3λ2 + λ − 3 = −(λ + 1)(λ2 + aλ + b) = −λ3 − (a + 1)λ2 − (a + b)λ − b

which shows that a = −4 and b = 3.

(c) The eigenvalues are the roots of the equation p(λ) = −(λ+1)(λ2−4λ+3) = 0.
We already know that λ1 = −1 is an eigenvalue. The other eigenvalues are the
roots of λ2 − 4λ + 3 = 0, which are λ2 = 1 and λ3 = 3.

An eigenvector w = (x, y, z)′ corresponding to an eigenvalue λ is a nontrivial
solution of the equation system

(1 − λ)x − 2y − 2z = 0
−x + (1 − λ)y = 0
−x + (1 − λ)z = 0

For λ = λ2 = 1 this system is equivalent to

−2y − 2z = 0
−x = 0
−x = 0

⇐⇒ x = 0, y = −z ,
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and for λ = λ3 = 3 we get

−2x − 2y − 2z = 0
−x − 2y = 0
−x − 2z = 0

⇐⇒ y = z, x = −2z .

Therefore eigenvectors corresponding to λ2, λ3 are v2 =

⎛
⎝ 0

−1
1

⎞
⎠, v3 =

⎛
⎝ −2

1
1

⎞
⎠

(or any nonzero multiples of these).

Problem 2

(a) The point (2, 3) is an equilibrium point because f(2, 3) = 0 and g(2, 3) = 0.

The Jacobian matrix of the system at a point (x, y) is A(x, y) =
( 2

3x − 4
3 1

− 3
2x −1

)

and at (2, 3) we get A(2, 3) =
(

0 1
−3 −1

)
. Since |A(2, 3)| = 3 > 0 and tr(A(2, 3))

= −1 < 0, the equilibrium point (2, 3) is locally asymptotically stable.

(b) A point (x, y) is an equilibrium point if and only if

1
3x2 − 4

3x − 5
3 + y = 0 (1)

6 − 3
4x2 − y = 0 (2)

If we add these equations we get − 5
12x2 − 4

3x + 13
3 = 0 ⇐⇒ 5x2 + 16x − 52 = 0.

This equation has the roots x1 = 2 and x2 = −26/5. By equation (2), the
corresponding values of y are y1 = 3 and y2 = −357/25 (= −14.28). (x1, y1) is the
equilibrium that we know from before, and (x2, y2) is the only other equilibrium
point.

(c) The two diagrams below show the nullclines and direction arrows (left) and
the nullclines together with some solution curves (right).
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Problem 3

(a) We write the constraint x ≥ 1 in standard form as −x ≤ −1. With the
Lagrangian L(x, y) = ax + y − λ(x2 + ay2 − m) − μ(−x + 1), the (Kuhn–Tucker)
necessary conditions for (x∗, y∗) to be a solution of the problem are as follows:
There must exist numbers λ and μ such that

L′
1(x

∗, y∗) = a − 2λx∗ + μ = 0 (1)
L′

2(x
∗, y∗) = 1 − 2aλy∗ = 0 (2)

λ ≥ 0 (λ = 0 if (x∗)2 + a(y∗)2 < m) (3)
μ ≥ 0 (μ = 0 if x∗ > 1) (4)

(x∗)2 + a(y∗)2 ≤ m (5)
x∗ ≥ 1 (6)

The Lagrangian is obviously concave, so these conditions are also sufficient for
optimality.

Condition (5) and (6) are the constraints in the problem. Since they are
both given in terms of ≤ -inequalities we know that the admissible set is closed.
Condition (5) also shows that the admissible set is bounded, and it follows from
the Extreme Value Theorem that the problem has a solution.

(b) Let x∗ = 1, y∗ =
√

(m − 1)/a. Then (5) and (6) above are satisfied (with
equality). Equations (1) and (2) give

a − 2λ + μ = 0 (1′)

1 − 2λ
√

a(m − 1) = 0 (2′)

From (2′) we get 2λ = 1/
√

a(m − 1), and from (1′),

μ = 2λ − a =
1√

a(m − 1)
− a =

1 − a
√

a(m − 1)√
a(m − 1)

.

We see that

μ ≥ 0 ⇐⇒ a
√

a(m − 1) ≤ 1 ⇐⇒ a3(m − 1) ≤ 1

⇐⇒ m − 1 ≤ 1/a3 ⇐⇒ m ≤ 1 + 1/a3 .

Thus, if m ≤ 1 + 1/a3, there exist nonnegative λ and μ that satisfy the Kuhn–
Tucker conditions together with the given values of x∗ and y∗.

If m > 1+1/a3, then the given point (x∗, y∗) does not satisfy the Kuhn-Tucker
conditions and is not optimal.

What other optimal points can there be? Condition (2) implies that λ cannot
be 0. Therefore λ > 0 and y∗ must also be positive. Since λ > 0, it follows from (3)
that (x∗)2 + a(y∗)2 = m, and for a given x∗, y∗ must be the nonnegative solution
of this equation.

If x∗ = 1 we get y∗ =
√

(m − 1)/a, as above.
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But if x∗ > 1, then μ = 0 and equations (1) and (2) give x∗ = a/(2λ) and
y∗ = 1/(2aλ). Then

m = (x∗)2 + a(y∗)2 =
a2

4λ2 +
1

4aλ2 =
a3 + 1
4aλ2 .

It follows that

λ2 =
a3 + 1
4am

, λ =
√

a3 + 1
2
√

am
,

so

x∗ =
a

2λ
=

a
√

am√
a3 + 1

and y∗ =
1

2aλ
=

√
m√

a(a3 + 1)
.

The constraint x > 1 now implies a3m > a3 + 1, i.e. m > 1 + 1/a3.

Conclusion: (I) If m ≤ 1 + 1/a3, then

x∗ = 1 , y∗ =

√
m − 1

a
, λ =

1
2
√

a(m − 1)
, μ =

1 − a
√

a(m − 1)√
a(m − 1)

.

(II) If m > 1 + 1/a3, then

x∗ =
a
√

am√
a3 + 1

, y∗ =
√

m√
a(a3 + 1)

, λ =
√

a3 + 1
2
√

am
, μ = 0 .

(If m = 1 + 1/a3, the formulas in (II) give the same values for x∗, y∗, λ, and μ as
the formulas in (I).)

(c) In case (I) above, V (a, m) = ax∗ + y∗ = a +
√

(m − 1)/a, and we get

∂V

∂m
=

1√
a

1
2
√

m − 1
=

1
2
√

a(m − 1)
= λ .

In case (II),

V (a, m) =
a2√am√

a3 + 1
+

√
m√

a(a3 + 1)
=

a2√am
√

a√
a(a3 + 1)

+
√

m√
a(a3 + 1)

=
(a3 + 1)

√
m√

a
√

a3 + 1
=

√
a3 + 1

√
m√

a

and
∂V

∂m
=

√
a3 + 1√

a

1
2
√

m
= λ .

(Comment: Strictly speaking, the calculation of ∂V/∂m above only holds when
m �= m0 = 1 + 1/a3. But since V is continuous with respect to m, and since

the one-sided limits lim
m→(m0)−

∂V

∂m
and lim

m→(m0)+

∂V

∂m
exist and are equal,

∂V

∂m
also

exists when m = m0.)
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Problem 4

(a) The Hamiltonian is H(t, x, u, p) = (x − u2)e−t + p(4ue−t − x). If (x∗, u∗) is
an optimal pair in this problem, there must exist a continuous and piecewise C1

function p such that the following conditions are satisfied for each t in [0, T ]:

(i) u = u∗(t) must maximize H(t, x∗(t), u, p(t)) with respect to u, and therefore
H ′(t, x∗(t), u, p(t)) = 0, i.e. −2u∗(t)e−t + 4p(t)e−t = 0. Since H is concave
with respect to u, this is also sufficient for maximization.

(ii) ṗ(t) = −H ′
x(t, x∗(t), u∗(t), p(t)) = −e−t + p(t), with p(T ) = 0 because x(T ) is

free.

(iii) ẋ∗(t) = 4u∗(t)e−t − x∗(t), x∗(0) = x0.

For each t in [0, T ] the Hamiltonian is concave in (x, u), so these conditions are
sufficient for optimality.

(b) Condition (ii) implies that p must satisfy the differential equation ṗ − p =
−e−t. The general solution of this equation is p = Cet + 1

2e−t. (Use formula
(5.4.4) in FMEA or formula (1.4.5) in MA2). Since we must have p(T ) = 0, we
get CeT + 1

2e−T = 0, so C = − 1
2e−2T and

p(t) = 1
2 (e−t − et−2T ) .

From (i) we get
u∗(t) = 2p(t) = e−t − et−2T ,

and (iii) then gives the following differential equation for x∗(t):

ẋ∗(t) + x∗(t) = 4(e−2t − e−2T ) .

The same formula from the textbook gives

x∗(t) = Ae−t − 4e−2t − 4e−2T .

The initial condition x∗(0) = x0 yields x0 = A− 4− 4e−2T , so A = x0 +4e−2T +4
and

x∗(t) = (x0 + 4 + 4e−2T )e−t − 4e−2t − 4e−2T .

(c) The value function is

V (x0, T ) =
∫ T

0

(
x∗(t) − (u∗(t))2

)
e−t dt

=
∫ T

0

[
(x0 + 4 + 4e−2T )e−t − 4e−2t − 4e−2T − (u∗(t))2

]
e−t dt

=
∫ T

0

[
x0e

−2t + terms that do not depend on x0
]
dt .
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By Leibniz’s formula,

∂V (x0, T )
∂x0

=
∫ T

0

∂

∂x0
(x0e

−2t) dt =
∫ T

0
e−2t dt

=
T

0
− 1

2e−2t = 1
2 (1 − e−2T ) = p(0) .

Alternatively, we could use

V (x0, T ) =
∫ T

0
x0e

−2t + terms that do not depend on x0
]
dt

= x0

∫ T

0
e−2t dt + something that does not depend on x0

and get
∂V (x0, T )

∂x0
=

∫ T

0
e−2t dt , etc. as above.
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