ECON4140 Mathematics 3

Monday December 10 2012, 14:30-17:30
There are 2 pages of problems to be solved.
All printed and written material may be used, as well as pocket calculators.
Grades given run from A (best) to E for passes, and F for fail.

- You are required to state reasons for all your answers.
- You are permitted to use any information stated in an earlier letter-enumerated item (e.g. "(a)") to solve a later one (e.g. "(c)"), regardless of whether you managed to answer the former. A later item does not necessarily require answers from or information given in a previous one.

Problem 1 Define for each real number q the matrices \mathbf{A}_{q} and \mathbf{B}_{q} by

$$
\mathbf{A}_{q}=\left(\begin{array}{ccc}
q & 1 & 1 \\
1 & q & q \\
1 & q & q
\end{array}\right) \quad \mathbf{B}_{q}=\left(\begin{array}{cccc}
q & 1 & 1 & q \\
1 & q & q & q \\
1 & q & q & q
\end{array}\right)=\left(\mathbf{A}_{q} \vdots \mathbf{b}_{q}\right) \quad \text { where } \mathbf{b}_{q}=q\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)
$$

(a) For each value of q, find the rank of \mathbf{A}_{q} and the rank of \mathbf{B}_{q} and decide whether the equation system $\mathbf{A}_{q} \mathbf{x}=\mathbf{b}_{q}$ has a solution. (Hint: can any row/column be deleted?)
(b) Explain why (or show that, if you prefer) \mathbf{A}_{q} is neither positive definite nor negative definite, regardless of q.
(c) Let $\mathbf{u}_{q}=\left(\begin{array}{c}q \\ 0 \\ -1\end{array}\right)$ and $\mathbf{v}_{q}=\left(\begin{array}{c}q \\ -1 \\ 0\end{array}\right)$. Find those values of q for which \mathbf{u}_{q} and/or \mathbf{v}_{q} are eigenvectors of \mathbf{A}_{q}, and - when they are - the corresponding eigenvalue(s).
(d) Show that the following are eigenvalues for \mathbf{A}_{q} :

$$
\frac{3 q}{2} \pm \sqrt{(q / 2)^{2}+2}
$$

(e) Find an eigenvector \mathbf{w} for \mathbf{A}_{q} such that \mathbf{w} does not depend on q.
(Hint: calculations from previous parts may be helpful; if you did not manage to solve completely parts (b) - (d), then you might alternatively look at part (a) for hints.)

Problem 2 Let $p \neq \pm \frac{1}{2}$ be a constant.
(a) Find the general solution of the difference equation

$$
y_{t+2}-(2 p+1) y_{t+1}+\left(p-\frac{1}{2}\right) y_{t}=-t
$$

(b) Find the general solution of the differential equation

$$
\begin{equation*}
\ddot{x}(t)-(2 p+1) \dot{x}(t)+\left(p-\frac{1}{2}\right) x(t)=-t \tag{D}
\end{equation*}
$$

(c) Replace the right-hand side of (D) (the differential equation) by $-t-\sin t$. Explain how to obtain a particular solution in this case.
(You are not required to carry out the calculations in full detail.)

Problem 3 Let $R>0$ and $T>0$, and consider the optimal control problem

$$
\begin{gathered}
\max \int_{0}^{T}\left(-\frac{(R x)^{2}}{2}-\frac{u^{R}}{R}\right) d t, \quad \text { where } \dot{x}=R x-u, \quad u \in[0,1] \\
x(0)=\bar{x}(>0), \quad x(T) \text { free }
\end{gathered}
$$

Note: You are not asked to solve the optimal control problem (and you shouldn't try).
(a) (i) State the (necessary) conditions from the maximum principle.
(ii) For what values of $R>0$ will a pair $\left(x^{*}, u^{*}\right)$ that satisfies these conditions, solve the problem?

In the following, let $u^{*}(t)$ be an optimal control, so that u^{*} is a continuous function of t.
(b) Find $u^{*}(T)$.
(c) It turns out (and you are not supposed to prove) that the derivative of the value function V wrt. initial state \bar{x}, is negative, i.e.: $\quad \partial V / \partial \bar{x}<0$.
Use this to show that if $R>1$, then $u^{*}(0)$ cannot be 0 .
(Hint: With H being the Hamiltonian, what is $\partial H / \partial u$ when $u=0$?)

