University of Oslo / Department of Economics

English only

ECON4140 Mathematics 3

Monday December 10 2012, 14:30–17:30

There are 2 pages of problems to be solved.

All printed and written material may be used, as well as pocket calculators. Grades given run from A (best) to E for passes, and F for fail.

- You are required to state reasons for all your answers.
- You are permitted to use any information stated in an earlier letter-enumerated item (e.g. "(a)") to solve a later one (e.g. "(c)"), regardless of whether you managed to answer the former. A later item does not necessarily require answers from or information given in a previous one.

Problem 1 Define for each real number q the matrices A_q and B_q by

$$\mathbf{A}_q = \begin{pmatrix} q & 1 & 1\\ 1 & q & q\\ 1 & q & q \end{pmatrix} \qquad \mathbf{B}_q = \begin{pmatrix} q & 1 & 1 & q\\ 1 & q & q & q\\ 1 & q & q & q \end{pmatrix} = (\mathbf{A}_q \vdots \mathbf{b}_q) \qquad \text{where } \mathbf{b}_q = q \begin{pmatrix} 1\\ 1\\ 1 \end{pmatrix}$$

- (a) For each value of q, find the rank of \mathbf{A}_q and the rank of \mathbf{B}_q and decide whether the equation system $\mathbf{A}_q \mathbf{x} = \mathbf{b}_q$ has a solution. (Hint: can any row/column be deleted?)
- (b) Explain why (or show that, if you prefer) \mathbf{A}_q is neither positive definite nor negative definite, regardless of q.
- (c) Let $\mathbf{u}_q = \begin{pmatrix} q \\ 0 \\ -1 \end{pmatrix}$ and $\mathbf{v}_q = \begin{pmatrix} q \\ -1 \\ 0 \end{pmatrix}$. Find those values of q for which \mathbf{u}_q and/or \mathbf{v}_q are eigenvectors of \mathbf{A}_q , and when they are the corresponding eigenvalue(s).
- (d) Show that the following are eigenvalues for \mathbf{A}_q :

$$\frac{3q}{2} \pm \sqrt{(q/2)^2 + 2}$$

(e) Find an eigenvector \mathbf{w} for \mathbf{A}_q such that \mathbf{w} does not depend on q. (Hint: calculations from previous parts may be helpful; if you did not manage to solve completely parts (b) – (d), then you might alternatively look at part (a) for hints.) **Problem 2** Let $p \neq \pm \frac{1}{2}$ be a constant.

(a) Find the general solution of the difference equation

$$y_{t+2} - (2p+1)y_{t+1} + (p-\frac{1}{2})y_t = -t$$

(b) Find the general solution of the differential equation

$$\ddot{x}(t) - (2p+1)\dot{x}(t) + (p-\frac{1}{2})x(t) = -t \tag{D}$$

(c) Replace the right-hand side of (D) (the *differential* equation) by $-t - \sin t$. Explain how to obtain a particular solution in this case. (You are not required to carry out the calculations in full detail.)

Problem 3 Let R > 0 and T > 0, and consider the optimal control problem

$$\max \int_{0}^{T} \left(-\frac{(Rx)^{2}}{2} - \frac{u^{R}}{R} \right) dt, \quad \text{where } \dot{x} = Rx - u, \quad u \in [0, 1]$$
$$x(0) = \bar{x} \ (>0), \qquad x(T) \text{ free}$$

Note: You are *not* asked to solve the optimal control problem (and you shouldn't try).

- (a) (i) State the (necessary) conditions from the maximum principle.
 - (ii) For what values of R > 0 will a pair (x^*, u^*) that satisfies these conditions, solve the problem?

In the following, let $u^*(t)$ be an optimal control, so that u^* is a continuous function of t.

- (b) Find $u^*(T)$.
- (c) It turns out (and you are not supposed to prove) that the derivative of the value function V wrt. initial state \bar{x} , is negative, i.e.: $\partial V/\partial \bar{x} < 0$. Use this to show that if R > 1, then $u^*(0)$ cannot be 0. (Hint: With H being the Hamiltonian, what is $\partial H/\partial u$ when u = 0?)