ECON4140 Mathematics 3

December 16th 2013, 0900-1200.
There are 2 pages of problems to be solved.
All printed and written material may be used, as well as pocket calculators.
Grades given run from A (best) to E for passes, and F for fail.

- You are required to state reasons for all your answers.
- You are permitted to use any information stated in an earlier item (e.g. "(a)") to solve a later one (e.g. "(c)"), regardless of whether you managed to answer the former. A later item does not necessarily require answers from or information given in a previous one.
- You can use English, Norwegian, Swedish or Danish language.

Problem 1 For each 2×2 matrix $\mathbf{A}=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$, let \mathbf{F} be the 4×4 matrix $\left(\begin{array}{llll}0 & 0 & 0 & 0 \\ 0 & a & b & 0 \\ 0 & c & d & 0 \\ 0 & 0 & 0 & 0\end{array}\right)$.
(a). Consider the quadratic form $Q(w, x, y, z)=(w, x, y, z) \mathbf{F}(w, x, y, z)^{\prime}$.

Find \mathbf{A} such that Q is positive definite, or show that no such \mathbf{A} exists.
(b). (i) Will A always have a (real) eigenvalue?
(ii) Will \mathbf{F} always have a (real) eigenvalue?

In the following, let $\mathbf{A}=\left(\begin{array}{cc}17 & 12 \\ 12 & 7\end{array}\right)$.
(c). (i) Show that $\mathbf{v}=(2,-3)^{\prime}$ is an eigenvector for \mathbf{A} with negative eigenvalue λ, and (ii) find p and q such that $(p, 2,-3, q)^{\prime}$ is an eigenvector for \mathbf{F}.
(d). Find an eigenvalue κ for \mathbf{A}, with $\kappa \neq \lambda$, and an associated eigenvector \mathbf{u}.
(e). The origin is an equilibrium point for the differential equation system

$$
\binom{\dot{x}(t)}{\dot{y}(t)}=\mathbf{A}\binom{x(t)}{y(t)}+(x(t)+y(t))^{2013}\binom{1}{1}
$$

Decide whether the origin is stable, or a saddle point, or neither; or show that the tools of this course do not yield conclusion.

Problem 2 Consider the differential equation

$$
\begin{equation*}
\ddot{x}(t)+\dot{x}(t)+x(t)=f(t) \tag{E}
\end{equation*}
$$

(a). Find the general solution of (E) for the case $f=37$.
(b). Explain how you would go forth to find the general solution of (E) for the case where $f(t)=t+4 e^{t}+5 \sin (9 t)$. (You are not asked to do the full detail.)

Problem 3 Consider the dynamic programming problem

$$
J_{t_{0}}(x)=\max _{u_{t} \geq 0}\left\{\sum_{t=t_{0}}^{T-1}\left(-x_{t} u_{t}\right)+x_{T}\right\} \quad \text { subject to } \quad x_{t+1}=x_{t}-e^{-u_{t}}, \quad x_{t_{0}}=x \geq T-t_{0}
$$

Observe that since $x_{t_{0}} \geq T-t_{0}$ and $e^{-u_{t}} \leq 1$, then $x_{t} \geq 1$ for all $t \leq T-1$.
Use this to show by induction that

$$
J_{t}(x)=x+t-T \quad \text { with } \quad u_{t}=0 \text { being optimal }
$$

is true for all $x_{0} \geq T-t_{0}$ and all $t=t_{0}, \ldots, T$.
(If you are unable to do this, calculate instead J_{T-1} and J_{T-2} for up to 50 percent score.)

Problem 4 Let $U=[0,1]$ and consider the optimal control problem

$$
\max _{u(t) \in U} \int_{0}^{5}\left[e^{u(t)}+x(t)\right] d t \quad \text { subject to } \quad \dot{x}(t)=\ln (2-u(t)), \quad x(0)=x_{0}, \quad x(5) \text { free. }
$$

(You are not asked to solve this optimal control problem!)
(a). State the necessary conditions from the maximum principle.
(b). Show that for some t the optimal control must be the maximum allowed value $u=1$.
(c). Assume there is a pair $\left(x^{*}, u^{*}\right)$ that satisfies the necessary conditions from the maximum principle. Show that this pair will solve the problem.

