University of Oslo / Department of Economics (corrected version, see grading guideline)

ECON4140 Mathematics 3

December 17th 2014, 0900-1200.

There are 2 pages of problems to be solved.

All printed and written material may be used, as well as pocket calculators.

Grades given run from A (best) to E for passes, and F for fail.

- You are required to state reasons for all your answers.
- You are permitted to use any information stated in an earlier item (e.g. "(a)") to solve a later one (e.g. "(c)"), regardless of whether you managed to answer the former. A later item does not necessarily require answers from or information given in a previous one.

Problem 1

- (a) Evaluate $\int_{-\pi}^{\pi} \left(\int_{\pi}^{2\pi} \frac{\sin(xy)}{x} dx \right) dy$. (*Hint:* You will need a symmetry property.)
- (b) Let f(x) be a given C^2 strictly increasing strictly convex function defined for all real x, and define f_1, f_2, \ldots inductively by

$$f_1(x) = f(x)$$
, and $f_{n+1}(x) = f'(f_n(x))$, each $n = 1, 2, ...$

Use induction to show that all the f_n are quasiconvex.

Note: Information from problem 2 will be used in problem 3, and information from problem 3 in problem 4. The «bonus» status of problem 4 part (c) is due to this dependence.

Problem 2 Let m > 0 be a constant. Consider for each m the matrices

$$\mathbf{A} = \mathbf{A}_m = \begin{pmatrix} m^3 & \frac{3}{2}m^{-7} \\ \frac{1}{2}m^{13} & 0 \end{pmatrix} \quad \text{and} \quad \mathbf{B} = \mathbf{B}_m = \begin{pmatrix} m^3 & \frac{3}{2}m^{-7} & 2 \\ \frac{1}{2}m^{13} & 0 & 0 \\ m^5 & m^{-5} & 4 \end{pmatrix}$$

(a) Show that $(-m^{-3}, m^7)'$ is an eigenvector for \mathbf{A}_m , and that its associated eigenvalue $\lambda = \lambda(m)$ is negative.

1

- (b) Find the other eigenvalue $\mu = \mu(m)$ of \mathbf{A}_m , and an associated eigenvector.
- (c) Find the only m > 0 such that \mathbf{B}_m and \mathbf{A}_m have same rank.

Problem 3 Let G and H be C^2 functions defined on $(0, \infty)$, let m > 0 be a constant and S be the open first quadrant $S = \{(x, y); \ x > 0, \ y > 0\}$. For $x = x(t), \ y = y(t)$, consider the differential equation system – valid from time t = 0 until the first time $T \ge 0$ for which $(x(T), y(T)) \notin S$:

$$\dot{x} = G(x) + H(y)$$

$$\dot{y} = \left[m^3 - G'(x) \right] \cdot y$$
(D)

(Observe that there is a derivative sign $\ll G' \gg$ in the second equation.)

- (a) Show that if H' > 0 > G'' (so that in particular, $m^3 G'$ is strictly increasing), then
 - (i) the system has at most one equilibrium point in S (note xy > 0 in S!), and
- (ii) if such one exists, it is a saddle point. (*Hint:* a term will vanish and simplify.) Let from now on $G(x) = 2x^{1/2}$ and $H(y) = -2y^{-3/4}$ so that the saddle point has coordinates $(\bar{x}, \bar{y}) = (m^{-6}, m^4)$. (You need not show this.)
 - (b) Put m=1. For those two integral curves (i.e. particular solution trajectories) (x(t),y(t)) which converge to (\bar{x},\bar{y}) as $t\to +\infty$, show that the $slope \frac{y(t)-\bar{y}}{x(t)-\bar{x}}$ converges to -1. (*Hint:* Problem 2 gives information which likely saves time.)
 - (c) Put m = 1. Sketch a phase diagram and indicate a few representative integral curves.

Problem 4 Let $x_0 > 0$ and consider – but do not solve! – the optimal control problem

$$V(x_0) = \max_{u(t) \ge 0} \int_0^{2014} \frac{-6e^{-t}}{u(t)} dt, \quad \text{where} \quad x(0) = x_0, \quad x(2014) \ge 0, \qquad \dot{x} = 2x^{1/2} - 2u^3.$$

- (a) State the conditions from the maximum principle. (You can safely disregard the $\langle p_0 \rangle$ constant and put it = 1).
- (b) Let x(t) satisfy the conditions from the maximum principle with adjoint variable p(t). Let $y(t) = e^t p(t)$, so that $\dot{y} = y + e^t \dot{p}$ (then y is the current-value adjoint). Show that (x, y) satisfies the differential equation system (D) of Problem 3, with $G(x) = 2x^{1/2}$, $H(y) = -2y^{-3/4}$ and m = 1 (as in Problem 3 part (c)). (Hint: you shall obtain the condition $u(t) = (y(t))^{-1/4}$.)
- (c) «Bonus» question: this part will be deleted (zero-weighted) if that benefits your grade. Consider your phase diagram for Problem 3 part (c), and assume $x(0) = x_0 = 1 = \bar{x}$ (the x-coordinate of the saddle point). Take for granted that the optimal path x^* ends at $x^*(2014) = 0$. Use this to argue for an upper or a lower bound for V'(1); i.e.,

Find an appropriate a > 0 and

- either argue that $V'(1) \leq a$
- or argue that $V'(1) \geq a$.

(Recall that $V = V(x_0)$ is the optimal value as function of initial state x_0 .)