ECON4140 Mathematics 3

December 17th 2014, 0900-1200.
There are 2 pages of problems to be solved.
All printed and written material may be used, as well as pocket calculators.
Grades given run from A (best) to E for passes, and F for fail.

- You are required to state reasons for all your answers.
- You are permitted to use any information stated in an earlier item (e.g. "(a)") to solve a later one (e.g. "(c)"), regardless of whether you managed to answer the former. A later item does not necessarily require answers from or information given in a previous one.

Problem 1

(a) Evaluate $\int_{-\pi}^{\pi}\left(\int_{\pi}^{2 \pi} \frac{\sin (x y)}{x} d x\right) d y$. (Hint: You will need a symmetry property.)
(b) Let $f(x)$ be a given C^{2} strictly increasing strictly convex function defined for all real x, and define f_{1}, f_{2}, \ldots inductively by

$$
f_{1}(x)=f(x), \quad \text { and } \quad f_{n+1}(x)=f^{\prime}\left(f_{n}(x)\right), \quad \text { each } n=1,2, \ldots
$$

Use induction to show that all the f_{n} are quasiconvex.

Note: Information from problem 2 will be used in problem 3, and information from problem 3 in problem 4. The «bonus» status of problem 4 part (c) is due to this dependence.

Problem 2 Let $m>0$ be a constant. Consider for each m the matrices

$$
\mathbf{A}=\mathbf{A}_{m}=\left(\begin{array}{cc}
m^{3} & \frac{3}{2} m^{-7} \\
\frac{1}{2} m^{13} & 0
\end{array}\right) \quad \text { and } \quad \mathbf{B}=\mathbf{B}_{m}=\left(\begin{array}{ccc}
m^{3} & \frac{3}{2} m^{-7} & 2 \\
\frac{1}{2} m^{13} & 0 & 0 \\
m^{5} & m^{-5} & 4
\end{array}\right)
$$

(a) Show that $\left(-m^{-3}, m^{7}\right)^{\prime}$ is an eigenvector for \mathbf{A}_{m}, and that its associated eigenvalue $\lambda=\lambda(m)$ is negative.
(b) Find the other eigenvalue $\mu=\mu(m)$ of \mathbf{A}_{m}, and an associated eigenvector.
(c) Find the only $m>0$ such that \mathbf{B}_{m} and \mathbf{A}_{m} have same rank.

Problem 3 Let G and H be C^{2} functions defined on $(0, \infty)$, let $m>0$ be a constant and S be the open first quadrant $S=\{(x, y) ; x>0, y>0\}$. For $x=x(t), y=y(t)$, consider the differential equation system - valid from time $t=0$ until the first time $T \geq 0$ for which $(x(T), y(T)) \notin S:$

$$
\begin{align*}
\dot{x} & =G(x)+H(y) \\
\dot{y} & =\left[m^{3}-G^{\prime}(x)\right] \cdot y \tag{D}
\end{align*}
$$

(Observe that there is a derivative sign $« G^{\prime} »$ in the second equation.)
(a) Show that if $H^{\prime}>0>G^{\prime \prime}$ (so that in particular, $m^{3}-G^{\prime}$ is strictly increasing), then
(i) the system has at most one equilibrium point in S (note $x y>0$ in S !), and
(ii) if such one exists, it is a saddle point. (Hint: a term will vanish and simplify.)

Let from now on $G(x)=2 x^{1 / 2}$ and $H(y)=-2 y^{-3 / 4}$ so that the saddle point has coordinates $(\bar{x}, \bar{y})=\left(m^{-6}, m^{4}\right)$. (You need not show this.)
(b) Put $m=1$. For those two integral curves (i.e. particular solution trajectories) $(x(t), y(t))$ which converge to (\bar{x}, \bar{y}) as $t \rightarrow+\infty$, show that the slope $\frac{y(t)-\bar{y}}{x(t)-\bar{x}}$ converges to -1 . (Hint: Problem 2 gives information which likely saves time.)
(c) Put $m=1$. Sketch a phase diagram and indicate a few representative integral curves.

Problem 4 Let $x_{0}>0$ and consider - but do not solve! - the optimal control problem $V\left(x_{0}\right)=\max _{u(t) \geq 0} \int_{0}^{2014} \frac{-6 e^{-t}}{u(t)} d t, \quad$ where $\quad x(0)=x_{0}, \quad x(2014) \geq 0, \quad \dot{x}=2 x^{1 / 2}-2 u^{3}$.
(a) State the conditions from the maximum principle.
(You can safely disregard the $« p_{0} »$ constant and put it $=1$).
(b) Let $x(t)$ satisfy the conditions from the maximum principle with adjoint variable $p(t)$.

Let $y(t)=e^{t} p(t)$, so that $\dot{y}=y+e^{t} \dot{p}$ (then y is the current-value adjoint).
Show that (x, y) satisfies the differential equation system (D) of Problem 3, with $G(x)=2 x^{1 / 2}, H(y)=-2 y^{-3 / 4}$ and $m=1$ (as in Problem 3 part (c)).
(Hint: you shall obtain the condition $u(t)=(y(t))^{-1 / 4}$.)
(c) «Bonus» question: this part will be deleted (zero-weighted) if that benefits your grade.

Consider your phase diagram for Problem 3 part (c), and assume $x(0)=x_{0}=1=\bar{x}$ (the x-coordinate of the saddle point). Take for granted that the optimal path x^{*} ends at $x^{*}(2014)=0$. Use this to argue for an upper or a lower bound for $V^{\prime}(1)$; i.e.,

Find an appropriate $a>0$ and

- either argue that $V^{\prime}(1) \leq a$
- or argue that $V^{\prime}(1) \geq a$.
(Recall that $V=V\left(x_{0}\right)$ is the optimal value as function of initial state x_{0}.)

