University of Oslo / Department of Economics / NCF

ECON4140 Mathematics 3 — on the 2015-05-29 exam

e This note is not suited as a complete solution or as a template for an exam paper,
it is too sketchy. It was written as guidance for the grading process — however, with
additional notes and remarks for using the document in teaching later.

e For readability, the problems are restated, their respective solutions on the same
page.

e Weighting: assigned at the grading committee’s discretion. (In case of appeals: the
new grading committee assigns weighting at their discretion.) The problem set was
written with the intention that a uniform weighting over letter-enumerated items

should be a feasible choice, and this — along with it being merely an intention to
facilitate which does not tie the committe’s hands — has been communicated.

Problem 3 fits this page and the related problem 4 follows:

Problem 3 Let 0 < K < @ < 1 be constants and let G be a given function. Consider the
differential equation system

#(t) = p(t) + @

plt) = K(t) - G(1) ()

(a) Deduce a second-order differential equation for x, and find the general solution of this
equation when G = 0. (Hint: For which v will z(¢) = € be a particular solution?)

(b) Find the general solution of (D) for the case when G(t) = Ke'.

On the solution of Problem 3

(a) We have Z(t) = p(t), so the equation is #(t) = Kxz(t) — G(t). When G = 0 we have
general solution C1eVE + Coe VK since K > 0.

(b) For a particular solution for z, try Le' and fit L: Le! = KLe' — Ke', so that L =
K /(K —1). This gives z; then p =& — Q:
K

x(t) = CreVE 4 CoeVE 4 ﬁet

p(t) = (C’let‘/? — C'Qe_t\/?)\/% + o

K -1

e —Q



Problem 4 Let 0 < K < @ < 1 be constants, and consider the optimal control problem

max /OH [- B ey -e)? - %[u(t)]Q} g, i—utQ, (0)=1y (11)frec.

u(t)eR 2

(a) i) State the conditions from the maximum principle.
ii) Are these conditions also sufficient?

(b) Show that in optimum, = and the adjoint (costate) p must satisfy the differential
t

equation system (D) in problem 3, with G(t) = Ke'.

(c) Suppose that for some set of parameters the optimal solution ends at z(11) = 11e'!.
Approximately how much would the optimal value change if the final time were
reduced from 11 to 10.97

On the solution of Problem 4:

(a) Let H(t,z,u,p) = —5(z — €")? — 2u? + p(u + Q). For (z*,u*) to be optimal, there
must be some p = p(t) satisfying the following conditions:

e u* maximizes H over u € R, i.e. maximizes pu — Lu?;

2
o p(t) = K(z*(t) — e') with p(11) =0
o " =u*+ @ with z(0) = .

H is concave wrt. (z,u) (being a concave function wrt. x plus a concave wrt. u), so
the conditions are sufficient.

(b) To satisfy the conditions, the optimal control is p, so that z satisfies (D); also, the
equation for p is like in (D).

(c¢) The derivative wrt. final time is H (11, 2*(11), w*(11),p(11)) =

_ 1611—611)2—0—|—0,
and a change of —1/10 yields a value change of ~ £ (10e'!)? =

(1
Ke?2,

SN



Problem 1 Define for each h € R the following matrices

5—h 3 2 5—h 3 2
Ah: 3 4—h 5 bh: 3 5 Ch: 3 4—h 3
2 3 5—h 2 3 5—h

(where Cy denotes Cj, with h = 0). Observe that C, = M — hl = (Ah|bh).

(a) u=(1,-2,1)"is an eigenvector of M. Find a corresponding eigenvalue A;. (You shall
obtain that 0 < A; < 3.)

(b) A2 = 3 is an eigenvalue of M. Find a corresponding eigenvector v. (You shall obtain
an answer such that vjvs3 < 0.)

(c) It is a fact that M has an eigenvector w with all coordinates nonnegative. Show why
this fact together with parts (a) and (b) imply that M must be positive definite.
(You are required to use precisely these pieces of information; you will not be rewarded
for using other calculations.)

(d) Show that Aj has rank 2 no matter what h is.

(e) Decide whether the following statement is true or false: “The equation system
A, (g) = by, has a solution (g) if and only if h is an eigenvalue for M.”

On the solution of Problem 1

(a) Calculate Mu to get u, so that A\; = 1.

(b) The first and last row of C3 are the same (delete one), while the top-left 2 x 2 minor
is nonzero. Subtract 3/2 of the first row from the second to get that vy = 0. Then
v1+v3 = 0,80 v = (1,0, —1)" (or any nonzero scaling) is an eigenvector corresponding
to )\2 = 3.

(c¢) From parts (a) and (b), w is indeed a third eigenvector, and since A\; and )y are
> 0, we have M positive definite iff the third eigenvalue is positive too. Which it
is: Because each element of Mw is the sum of nonnegative numbers — not all zero,
because M isn’t null and w is an eigenvector and cannot be null — the eigenvalue
cannot be < 0.

(d) The bottom 2 X 2 minor is nonzero except when 8 — 2h = 9 i.e. h = —1/2. For
h = —1/2, some other 2 X 2 minor is nonzero: }55h g‘ =9—3his >0 for h=—-1/2
(and the last 2 x 2 minor is nonzero too).

(e) True: there is solution iff C;, and A, have same rank, and since Ay is a block in
Cy, then rank(C,) > rank(Aj;) = 2. Thus the ranks match iff rank(C,) < 3 i.e. iff
0=|Cy| = |M — RI] i.e. iff h is an eigenvalue for M.



Problem 2 Given constants » > 0, s > 0 and ¢ > 0, a vector m € R™ such that
1=m;>my>...m, >0, and for x € R" the functions

9(x)

= lzi| 4+ ...+ |zal, F(x) =m'x — sg(x) + (s — 1)t, H(x) = F(x) — rmax |z;]

(where max; |z;| means the greatest of the n numbers |z4],...,|z,|).

(a)

i) Show that H is concave for every r > 0, s > 0.
ii) Consider part (b) below. Explain why the existence of such an s as asked for in
part (b), will show that x* = (¢,0,...,0)" solves the nonlinear programming problem

max m'x subject to g(x) <t
X

Find an s € [0, 1] such that 0 is a supergradient for F' at x* = (¢,0,...,0)".

Hint: Explain why it suffices to show that F' attains a (local or global) maximum at
x*, and then show that this happens for some s > 0. You shall get that m,, < s < my
and also that s does not depend on t (if you need to, check the case ¢t = 1 first).

On the solution of Problem 2

(a)

i): the absolute value is a convex function, the max of convexes is convex, and —r < 0.
The linear and constant terms do not affect concavity /convexity, and since s > 0 it
suffices to show g convex — and it is a sum of convexes.

ii): I is the Lagrangian of the problem, with s being the multiplier. Part (b) then
restates the sufficient condition for the concave programming problem to have a
solution at x* (where the constraint is active, so any s > 0 will do — we need not
have s < 1, but it is certainly sufficient).

For a local max, 0 is a supergradient. We have F(x) = >, (m;z; — s|z;]) plus a
constant, and it suffices to find an s such that x* (locally) maximizes. We can consider
each coordinate z; separately: Any s > my will make 0 maximize m;z — s|z| for i > 2,
while s = m; = 1 makes m,z — s|z| identically zero for z > 0 — hence z =t is a local
max.

(*) Note added 2016: The Lagrangian is actually F+t, where tis a constant and does not change any conditions.





