ECON4140 Mathematics 3

June 10th 2016, 0900-1200.
There are 2 pages of problems to be solved.
All printed and written material may be used, as well as pocket calculators.
Grades given run from A (best) to E for passes, and F for fail.

- You are required to state reasons for all your answers.
- You are permitted to use any information stated in an earlier letter-enumerated item (e.g. "(a)") to solve a later one (e.g. "(c)"), regardless of whether you managed to answer the former. A later item does not necessarily require answers from or information given in a previous one.

Suggested weighting: Problems 1, 2, 3 and 4 are expected to count 25 percent each.
Problem 1 For arbitrary real constants a, b, c, d, p, q, r, s, define the matrices

$$
\mathbf{A}=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right), \quad \mathbf{B}=\left(\begin{array}{cc}
p & q \\
r & s
\end{array}\right), \quad \mathbf{F}=\left(\begin{array}{cccc}
a & 0 & 0 & b \\
0 & p & q & 0 \\
0 & r & s & 0 \\
c & 0 & 0 & d
\end{array}\right), \quad \mathbf{G}=\left(\begin{array}{cccccc}
a & 0 & 0 & b & a & b \\
0 & p & q & 0 & c & d \\
0 & r & s & 0 & a & b \\
c & 0 & 0 & d & c & d
\end{array}\right)
$$

Notice that \mathbf{F} has \mathbf{B} as the "middle" block and the elements of \mathbf{A} in the corners, and that the blocks of \mathbf{G} are $(\mathbf{F}: \underset{\mathbf{A}}{\mathbf{A}})$. Let prime (e.g. $\left.\mathbf{F}^{\prime}\right)$ denote transpose.
(a) - Show that if $q r=0$, then either $(0,1,0,0)^{\prime}$ or $(0,0,1,0)^{\prime}$ is an eigenvector of \mathbf{F}, and

- find the eigenvalue corresponding to either $(0,1,0,0)^{\prime}$ or $(0,0,1,0)^{\prime}$.
(b) If $q r=p s \neq 0$, then $p+s$ is an eigenvalue of \mathbf{F}.
- Find a corresponding eigenvector of the form $(h, k, \ell, 0)^{\prime}$.
(c) Show that for λ to be an eigenvalue of \mathbf{F}, then λ must be an eigenvalue of \mathbf{A} or an eigenvalue of \mathbf{B}. (Or possibly both. Hint: what is the product of the characteristic polynomials of \mathbf{A} and \mathbf{B} ?)

Problem 2

(a) Solve the difference equation

$$
\begin{equation*}
x_{t+2}+\frac{1}{6} x_{t+1}-\frac{1}{6} x_{t}=2 \tag{D}
\end{equation*}
$$

(b) - Show that the differential equation system

$$
\binom{\dot{x}}{\dot{y}}=\frac{1}{6}\left(\begin{array}{cc}
1 & 2 \tag{S}\\
2 & -2
\end{array}\right)\binom{x}{y}+\binom{0}{6}
$$

implies that x satisfies

$$
\begin{equation*}
\ddot{x}+\frac{1}{6} \dot{x}-\frac{1}{6} x=2 \tag{E}
\end{equation*}
$$

- Find the general solution of (E)
(c) - Is (D) stable?
- Is (E) stable?
- Classify the equilibrium point $\left(x^{*}, y^{*}\right)=(-12,6)$ of (S).

Problem 3 Let $a_{t}>0, b_{t}>0, m>1, T>t_{0}$ and $x_{t_{0}}>0$ be given numbers. Consider the dynamic programming problem

$$
J_{t_{0}}\left(x_{t_{0}}\right)=\max _{u_{t} \in[0,1]} \sum_{t=t_{0}}^{T} a_{t}^{1 / m} \cdot\left(\left[u_{t}+b_{t}\right] \cdot x_{t}\right)^{1-1 / m}, \quad \text { subject to } \quad x_{t+1}=x_{t} \cdot\left(1-u_{t}\right)
$$

Although you cannot use without proof the information given in part (b) in part (a), it gives a hint that is likely helpful.
(a) In this part, let $a_{t}=b_{t}=1$ for all t. Calculate J_{T}, J_{T-1} and J_{T-2}.
(b) Show by induction that the optimal u_{t}^{*} does not depend on x.

Problem 4 Let r, k, T and x_{0} be given numbers, all >0, and let n be a natural number $(\in\{1,2,3, \ldots\})$. Consider the optimal control problem $\max _{u(t) \geq 0} \int_{0}^{T}\left[k x(t)+e^{-r t}(u(t))^{1-1 / 2 n}\right] d t, \quad$ subject to $\quad \dot{x}=-u, \quad x(0)=x_{0}, \quad x(T) \geq 0$.
(a) - State the conditions from the maximum principle. (Put the $<p_{0} »$ constant $=1$.)

- Do we know that a pair $\left(x^{*}, u^{*}\right)$ satisfying these conditions, will be optimal?
(b) Show that there are constants α, β and γ such that
- the optimal control is of the form $u^{*}(t)=(\alpha+\beta \cdot(t-T))^{-2 n} e^{-\gamma t}$, with
- $\alpha \geq 0$.

