
ECON4140, the 2016 exam

No formal guidelines were produced prior to grading. This note summarizes the
experiences from the process.

The suggested weighting of 1/4 on each of problems 1, 2, 3 and 4, was carried out. By
and large, parts 1 (a)–(c) and 2 (a)–(c) were given equal weight, and parts 3(a), 3(b),
4(a) and 4(b) were given equal weight. In some cases, particularly in problem 3, some
papers were far into part (b) under a “3 (a)” headline, and got partial credit for part
(b) as well.

Some considerations for the benefit of (most of) the candidates, had to be made on
problems 3 and 4, where lots of elementary errors (which were not really core to the
theory) could very well have been penalized much harsher. Nevertheless, both problems
1, 3 and 4 ended up on an average score of 39 percent, just below the pass mark at 40
percent. The reason why the grading distribution in the end turned out to look fairly
normal, was the good answers to problem 2, where the average score was worth a B.
The usual grading thresholds of 40, 45, 55, 75 and 91 percent were applied.

Problems 1 through 4 are addressed on the next four pages.
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Problem 1

Matrices A, B and F were also assigned in Mathematics 2. The impression – without any
rigorous count being made – is that the Mathematics 3 candidates messed up elementary
calculations (like cofactor expansion in part (c)) more than the Mathematics 2 students
did. The matrix G was not used for anything; the explanation was that at the final
stage, one question was dropped in the interest of reducing total workload.

Part (a) Should be straightforward, but got only about 1/2 score. Direct calculations:
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By assumption, q = 0 or r = 0. If r = 0, the former is a scaling p of (0, 1, 0, 0)′ which
is then an eigenvector as it should; if s = 0, the latter will be a scaling s of (0, 0, 1, 0)′

which is then an eigenvector.

Problem (b) This got about 1/3 average score. Solve (F− (p+ s)I)x = 0 using
Gaussian elimination. Except for special values of a and c, x1 = h must vanish. We
are left with solving

( −s q
r −p

)
( k` ) = 0. Putting k = q and ` = s will work in the first

equation (this is not a null vector, as qr = ps 6= 0) and thus automatically in the second,
as there is some degree of freedom given that it is known (from the problem text) that
we have an eigenvalue. Any nonzero scaling (like

(
1
s/q

)
) will of course also be a correct

answer. Also ( pr ) (or any nonzero scaling), using the second equation instead.

Part (c) Average score even worse than part (b), despite not being a hard problem;
the Mathematics 2 exam asked for |F|, and the calculations of |F− λI| is analogous with
the same zero elements and two steps of cofactor expansion. Along the first row:

|F− λI| = (a− λ)
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By a second cofactor expansion along the last row: (a−λ)(d−λ)

∣∣ p−λ q
r s−λ

∣∣−bc ∣∣ p−λ q
r s−λ.

∣∣.
The common factor is |B− λI|, and factoring out, we have |A− λI| · |B− λI|, the
product of characteristic polynomials. An eigenvalue of F is a zero of |F− λI| is a zero
of |A− λI| · |B− λI| is a zero of |A− λI| or of |B− λI| (or both) – is an eigenvalue of
A or of B (or of both).

Some papers messed up the cofactor expansion. Other papers computed the character-
istic polynomials and claimed the identity hinted at (whether or not they even obtained
it, given their errors!) and then stopped without pointing out any connection between
|F− λI| and eigenvalues; this connection cannot be taken as “goes-without-saying” for
candidates who in parts (a) and (b) could hardly show any knowledge of eigenvalues and
their properties.
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Problem 2

Problem 2 turned out with high scores, especially part (b), where the average was closing
in on the “A”. The problems are not so hard, but there are a couple of pitfalls that led
to somewhat weaker answers to the difference equations questions.

The deduction of (E) from (S) by differentiating the first equation in the system,
turned out fine in the sense of score – although it is easy to make mistakes that take
time to debug, the answer is given.

The coefficients of (D) and (E) are the same, and so are the characteristic roots, solving 
r2 + r/6 − 1/6 = 0, i.e., roots r1 = −1/2 and r2 = 1/3. The corresponding homogeneous 
equations will then have solutions A1(−1/2)t+A2(1/3)t and C1e

−t/2+C2e
t/3, respectively. 

Now, the stability criteria are different, a pitfall that did catch a few candidates (most 
of whom applied the differential equations criterion). The roots are real, so we need not 
invoke the “real part” terminology (and candidates were free to phrase the criteria as if 
roots were always real): (D) is stable (even, globally asymptotically stable) because 
max{|r1|, |r2|} < 1, while (E) is unstable as max{r1, r2} > 0; because r1 < 0, the 
equilibrium point of (S) is a saddle point. Stability and instability could easily be 
inferred from the solutions as well – even the saddle point classification could, as the 
convergent paths are found by putting C2 = 0.

Now for the (constant!) particular solution of the inhomogeneous (D) and (E), they
are 2 resp. −12, hence not the same – again, most who erred, picked the formula for the
differential equations, this explaining the nearly one grade difference between parts (a)
and (b).
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Problem 3

This was less than satisfying. We think even ECON2200 candidates should know that
root functions are monotonous, and that znegative number does not vanish. Nevertheless,
several candidates computed JT by differentiating, getting (1 + u)−1/m = 0, inferring
that 1 + u = 0 and then either putting u∗T = −1 without a second thought, or pointing
out that we are restricted to [0, 1] and thus picking the closest point 0 (which, although
wrong, would be a valid inference had one pointed out concavity, which one should
be able to at this stage). We recognize though, that economics candidates would be
inclined to look for stationary points unless drilled at other options, and that the −1/m
formulation could invite to inverting.

We ended up with awarding a middle “B” on part (a) for carrying out a dynamic
programming argument, even when the static optimization was done wrong1. On part
(b), a middle “B” was awarded for carrying out the induction proof regardless of whether
one kept at ≡ bt ≡ 1 (as many did), or messed up the static optimization.

These measures were applied under considerable doubt. Yet the average score on
problem 3 still ended up (just) below the pass mark, with part (b) being the worst in
the set – despite its similarity to a problem known from the seminars.

Part (a) Let at ≡ bt ≡ 1. We have JT (x) = maxu∈[0,1]
{

((1 + u)x)1−1/m
}

; the maxi-

mand is strictly increasing in u, so JT (x) = (2x)1−1/m with u∗T = 1.
JT−1(x) = maxu∈[0,1]

{
((1 + u)x)1−1/m + (2x(1− u))1−1/m

}
= x1−1/m maxu∈[0,1] gT−1(u),

where gT−1(u) = (1 + u)1−1/m + 21−1/m(1 − u)1−1/m has derivative [1 − 1/m] · [(1 +
u)−1/m − 21−1/m(1 − u)−1/m] and is concave (differentate once more and notice that
[1− 1/m] · [−1/m] < 0). The derivative at zero is negative, so u∗T−1 = 0 and JT−1(x) =
x1−1/mgT−1(0) = (1 + 21−1/m)x1−1/m.
JT−2(x) = maxu∈[0,1]

{
((1 + u)x)1−1/m + (1 + 21−1/m)x1−1/m(1− u))1−1/m

}
. We max-

imize gT−2(u) = (1 + u)1−1/m + (1 + 21−1/m)(1 − u)1−1/m (concave again, its derivative
at zero is (even more!) negative). So u∗T−2 = 0 and JT−2(x) (2 + 21−1/m)x1−1/m.

Part (b) With general at and bt, a positive x1−1/m factors out: suppose for induction
that Jt(x) = Gtx

1−1/m with u∗t not depending on x. Then at time t− 1:

Jt−1(x) = max
u∈[0,1]

{
a
1/m
t ·

(
[ut + bt] · xt

)1−1/m
+Gt · (x(1− u))1−1/m

}
= x

1−1/m
t max

u∈[0,1]

{
a
1/m
t · [ut + bt]

1−1/m +Gt · (1− u)1−1/m
}

︸ ︷︷ ︸
=:Gt−1, no x-dependence

so neither will u∗t−1 nor Gt−1 depend on x. The induction proof is completed by noting

that when t = T , the property holds: GT = maxu∈[0,1]
{
a
1/m
T · [uT + bT ]1−1/m

}
, the

maximizing u∗T does not depend on x as the maximization does not.

1as long that it did not over-simplify; the candidate who claimed that we needed x = 0 and hence
Jt = 0 identically, could certainly not get such a score
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Problem 4

Again, there were some strange recurring issues. About half of the papers seem to think 
that the maximum principle states H'u = 0 (failing to capture non-stationary boundary 
optima). Part (a) ended up being scored roughly as follows: 20 percent for getting the 
Hamiltonian, equally much for the maximization (half deducted for claiming stationarity 
is necessary), 30 percent for p with transversality and 30 percent for pointing out that 
the concavity makes the conditions sufficient as well. The average score for part (a) was 
around 1/2.

We chose to be forgiving over the mistake of identifying p(0) with the “p0” constant 
(which the book uses in front of the running utility as a Fritz John type formulation 
capturing the constraint qualification), and the consequences. Hardly anyone got full 
score on part (b), and the average was below the pass mark threshold.

Part (a) With H(t, x, u, p) = kx + e−rtu1−1/2n − pu, we did expect the following con-
ditions:

• That the optimal control u∗ maximizes kx+ e−rtu1−1/2n − pu over u ≥ 0;

• That p satisfies ṗ = −∂H/∂x = −k with p(T ) ≥ 0 and p(T ) > 0 should x∗(T ) > 0.

We do not stress that the optimal path must satisfy the differential equation, as that
could, arguably, be a “goes-without-saying”.

For sufficiency, we got some strange arguments confusing single-variable and two-
variable concavity, that should be well known. However, most who tried to answer this,
relied on trying to verify the Mangasarian condition: we have a sum of concave functions,
as u1−1/2n is concave. Alternatively, one could point out that as the maximization wrt.
u does not involve x, then the maximized Hamiltonian will be kx (linear, thus concave)
plus something not involving x, verifying the Arrow condition.

Part (b) Here, we would have wanted to see the following: H'u is infinite at u = 0, so a 
maximum must be interior (this detail we hardly saw); the first-order condition yields

(1− 1/2n)e−rtu−1/2n = p

which when solved out, and inserting for p(t) = p(T ) + k(T − t) from the differential
equation, yields

u∗(t) =

(
p(t)

1− 1/2n

)−2n
e−2nrt =

(
p(T ) + k(T − t)

1− 1/2n

)−2n
e−2nrt

We can now identify the constants, even on closed form:

α =
1− 1/2n

, β =
p(T )                        - k

1− 1/2n
and γ = 2nr.

For the final question, we would have wanted to see that α ≥ 0 because the transversality
condition yields p(T ) ≥ 0.
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