
University of Oslo / Department of Economics / NCF

ECON4140 Mathematics 3 – on the 2018–06–01 exam

• New this semester: restricting calculators to the scienti�c calculator Casio FX-85EX
(as well as a simpler arithmetic one).

• Standard disclaimer: This note is not suited as a complete solution or as a template
for an exam paper. It was written as guidance for the grading process � however,
with additional notes and remarks for using the document in teaching later.

� The document re�ects what was expected in that particular semester, and which
may not be applicable to future semesters. In particular, what tests one is requi-
red to perform before answering �no conclusion� may not apply for later.

• Weighting: at the committee's (and in case of appeals: the new grading committee's)
discretion. The problem set was written with the intention that a uniform weighting
over letter-enumerated items should be a feasible choice.

• Default percent score to grade conversion table for this course:
F (fail) E D C B A
0 to 39 40 to 44 45 to 54 55 to 74 75 to 90 91 to 100

The committee (and in case of appeals, the new committee) is free to deviate.

Addendum after grading: See the attached note from the grading committee.

Problems restated as given, followed by annotations boxed. Addendum after grading: A
two-page note from the grading committee is attached at the end.
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Problem 1 Let Ac =

0 0 9
0 c 0
5 0 4

 for each real constant c.

(a) Decide the rank of Ac and the de�niteness of the quadratic form Q(x) = x′Acx.

(b) v = (9, 0,−5)′ is an eigenvector. Find the associated eigenvalue ν < 0.

(c) Calculate the characteristic polynomial p(λ) and show that p(c) = 0.

(d) Find an eigenvalue µ > ν such that µ does not depend on c, and an associated
eigenvector u.

On problem 1

(a) det (Ac) = 9 · (−c · 5) is nonzero (and the rank is 3) if and only if c 6= 0. The
�rst and third rows are non-proportional and therefore linearly independent. So
rank Ac = 3 for c 6= 0, and rank A0 = 2.

For the quadratic form: writing out the function Q(x, y, z) = cy2+14xz+z2, we can
attain any sign by �xing z 6= 0 and y and letting x vary. So Q is inde�nite. If one
alternatively uses matrix tools, the associated symmetric matrix is 1

2
(Ac + A′c) =(

0 0 7
0 c 0
7 0 4

)
. Inde�niteness follows from negativity of the minor det

∣∣ 0 7
7 4

∣∣.
(Note on symmetrization: They have been urged to symmetrize in the course, and
it was reiterated in the �nal review. Still, for those who really know what they are
doing, it is possible to argue for inde�niteness based on opposite-sign eigenvalues
if they are found �rst (then Q(u) = µ‖u‖2 = 9‖u‖2 > 0 > ν‖v|2 = Q(v)) � but
the course has not highlighted those one-sided implications.)

(b) Acv = (−45, 0, 45− 20)′ = −5v, so ν = −5.

(c) p(λ) = det (Ac− λI) =
∣∣∣ −λ 0 9

0 c−λ 0
5 0 4−λ

∣∣∣. Already here we spot that p(c) = 0. Cofactor

expansion along the middle column yields (c− λ)(λ2 − 4λ− 45).

(d) The trace 4 + c equals the sum −5 + c+µ, so µ = 9. (Alternatively, �nd the second
zero of λ2−4λ−45 as 2+

√
4 + 45 = 9.) Solving (Ac−9I)u = 0 yields u1 = u3, and

u2 = 0 (not uniquely so if c = 9, but always possible). So an associated eigenvector
u is (1, 0, 1)′.

(It was deliberate to ask for �an� associated eigenvector, so it is not necessary to
cover all nonzero scalings.)
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Problem 2 Consider the di�erence equation xt+2 − xt+1 + xt = κ2t.

(a) In this part, let κ = 0. Find the particular solution that satis�es x0 = 0 and x1 = 1.

(b) In this part, let κ = 1. Find the general solution.

(c) Let an =
1

n! · (n+ 2)
. Prove by induction that a1 + . . .+ an =

1

2
− 1

(n+ 2)!
.

On problem 2

(a) Homogeneous di�erence equation. The characteristic equation associated to the
di�erence equation is m2 − m + 1 = 0, with non-real roots 1

2
(1 ±

√
−3) and tri-

gonometric solutions 1t[C cos(tπ/3) + D sin(tπ/3)]. x0 = 0 yields C = 0 and then
x1 = 1 yields D = 1/ sin(π/3) (which actually equals

√
4/3 = 2

3

√
3, but that is not

necessary to point out). Solution: sin(tπ/3)/ sin(π/3).

(Note: Solving the �rst few by hand, we get 0, 1, 1, 0,−1,−1, 0, 1, ... so one can see
without the formula that (i) we have period six, so the argument of the sin should
be t · 2π/6, and (ii) the amplitude does not change, hence the �1t�.)

(b) We already have the form for the corresponding homogeneous equation, and need
some u∗t satisfying the inhomogeneous. TryK ·2t and �tK toK[4·2t−2·2t+2t] = 2t.
This yields K = 1/3, so the answer is A cos(tπ/3) +B sin(tπ/3) + 1

3
· 2t.

(c) (High school exam R2 spring 2017, slightly modi�ed.)

True for n = 1: 1
2
− 1

(n+2)!

∣∣∣
n=1

= 1
2
− 1

6
= 1

3
= a1, so suppose true for N . Then

a1 + . . .+ aN+1 = a1 + . . .+ aN + aN+1 =
1

2
− 1

(N + 2)!
+

1

(N + 1)!(N + 3)

=
1

2
−
[
N + 3

(N + 3)!
− N + 2

(N + 3)!

]
=

1

2
− 1

(N + 3)!

i.e., true for N + 1. We are done.
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Problem 3 Let a ≥ b be constants, either both > 1 or both ∈ (−1, 1) (i.e., either
a ≥ b > 1 or 1 > a ≥ b > −1). Consider the di�erential equation system

ẋ = (1− ay − x) · x
ẏ = (1− bx− y) · y (S)

(a) • Find all four stationary states (equilibrium points).

• Classify that stationary state (x̄, ȳ) for which both x̄ > 0 and ȳ > 0. (Such a
point does exists under the assumptions on the constants. Your answer might
depend on a and b.)

(b) Let a = b = 1
2
. Sketch a phase diagram covering the set where 0 ≤ x ≤ 2, 0 ≤ y ≤ 2,

and indicate some solution curves.

On problem 3

(a) • Solve the equation system (1 − ay − x) · x = 0 = (1 − bx − y) · y: Either
x = 0 or x = 1− ay; AND, either y = 0 or y = 1− bx. Four possibilities: (i)
(x, y) = (0, 0), (ii) x = 0 and y = 1− bx = 1 yields (x, y) = (0, 1), (iii) y = 0
and x = 1 − ay = 1 yields (x, y) = (1, 0) and �nally the point (x̄, ȳ), which
yields a linear equation system to solve. E.g., put x̄ = 1−aȳ = 1−a(1−bx̄) =
1− a+ abx̄, so x̄ = 1−a

1−ab , and calculate ȳ to get (x̄, ȳ) = ( 1−a
1−ab ,

1−b
1−ab).

(It is not required to point out that x̄ and ȳ are positive. But for each, the
assumptions grant that numerator and denominator have the same sign.)

• The Jacobian is
(

1−ay−2x −ax
−by 1−bx−2y

)
, which becomes

( −x̄ −ax̄
−bȳ −ȳ

)
when 1− aȳ−

x̄ = 1−bx̄−ȳ = 0. The trace is negative, while the determinant is x̄ȳ(1−ab) 6=
0 as ab 6= 1 by assumption. (Inserting the coordinates yields the same, of
course.)

Therefore: if ab > 1, the determinant is negative and (x̄, ȳ) is a saddle point,
while if ab < 1 then (by trace<0), (x̄, ȳ) is locally asymptotically stable.

(b) With a = b = 1
2
, the nullclines x = 1 − ay and y = 1 − ax become the lines

y = 2 − 2x (for ẋ = 0) and y = 1 − 1
2
x (for ẏ). Each axis is a nullcline too, but

in the set speci�ed in the problem, they do not need to indicate anything there
(though the diagram next page does). The ambition is to get things qualitatively
right (correct straight-line nullclines, correct arrows at nullclines, solution curves
consistent with that, ... ). Those who get the wrong classi�cation for the stationary
state (x̄, ȳ) for this case in part (a), may carry that error with them; the grading
committee should exercise its best judgement. Example sketch:
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Problem 4 Consider for constants x0 > 0 and T > 0 the optimal control problem

max
u(t)∈[0,1]

∫ T

0

(u− x2) dt where ẋ = x+ u, x(0) = x0 and x(T ) free.

(a) State the conditions from the maximum principle. Are these conditions also su�cient?

(b) Show that an optimal control u∗ must be 0 or 1 somewhere in the open interval (0, T ).
(I.e., that it cannot be optimal to choose a u s.t. u(t) ∈ (0, 1) for all t ∈ (0, T ).)

On problem 4

(a) Let H(t, x, u, p) = u−x2 +p · (x+u). Since H is concave wrt. (x, u), the conditions
to follow are su�cient as well:

i) u∗ maximizes u− x2 + p · (x+ u) over u ∈ [0, 1].

ii) p satis�es ṗ(t) = − ∂
∂x

[u− x2 + p · (x+ u)] = 2x− p, with p(T ) = 0.

iii) (The book does not include that the di�erential equation ẋ = x + u (with
x(0) = x0) must hold, but they are free to include it.)

They can write out i) as u∗ = 1 if 1 + p > 0 and u∗ = 0 if 1 + p < 0. It is not
necessary to state e.g. �there must exist a continuous, piecewise C1 function p ...�.

(b) Since p(T ) = 0, then p(t) must be > −1 for all su�ciently large t < T . For those
t, we must have u∗(t) = 1. (Pointing out that p(T ) > −1⇒ u∗(T ) is one (merely
at T ) does still apply the relevant condition from the maximum principle, which is

the main point of the question, and should be awarded partial score accordingly.)

4

2019: 
The typewriter-font 
"is one" 
corrects a typo.



Problem 5 De�ne the functions u and v on the (convex!) set {(x, y); x ≥ 0, y ≥ 0} by

u(x, y) = (16xy)3 and v(x, y) = x+
√
x2 + 2y

(a) Decide quasiconcavity/quasiconvexity of each of the functions u and v.
Hints: (I) �neither� is wrong answer! (II) solve level curves v(x, y) = C for y.

Consider now the necessary Kuhn-Tucker conditions � disregarding constraint quali�-
cations, which you can take for granted that hold � associated to each of the problems

max u(x, y) such that v(x, y) = 1, x ≥ 0, y ≥ 0 (P1)

max (−v(x, y)) such that u(x, y) ≥ 1, x ≥ 0, y ≥ 0 (P2)

It is a fact that (x1, y1) = (1
2
, 0) satis�es the necessary conditions associated to (P1), and

that (x2, y2) = (1
4
, 1

4
) satis�es the necessary conditions associated to (P2).

(b) For each problem (P1), resp. (P2), and the corresponding point (x1, y1), resp. (x2, y2):

Does the point (x1, y1) resp. (x2, y2) also satisfy su�cient Kuhn�Tucker conditions? If
not: which part of the conditions fails?

Hint: The Lagrangians are not concave.

On problem 5 A general note: Hint (I) of (a) is to mitigate errors spilling over to
part (b). With a hypothetical �neither� answer to part (a), one could argue that one
is nowhere close to a su�cient condition in part (b). For part (b), some consistency
with the answer to part (a) is expected; in particular, some would likely answer only
�quasiconcave� or �quasiconvex� to the v function.

(a) u: one can calculate level curves y = constant/x to �nd out it is quasiconcave; one
can note it is an increasing transformation of a concave function (they are allowed
to know that Cobb�Douglas with degree of homogeneity ∈ (0, 1] is concave) � or one
can also calculate the bordered Hessian determinant, which is practically feasible.
Anyway, u is quasiconcave.

v on the other hand, is not an increasing transformation of a concave function, hen-
ce the hint (which was also employed in a seminar problem which only had a sign
di�erent). Besides, the bordered Hessian determinant involves some ugly calcula-
tions where it is easy to make mistakes. (And, the bordered Hessian determinant
is zero � some might get confused and not spot that this does indeed imply the
conclusion, which has not been stressed much in class.)
Proceeding to hint (II), v(x, y) = C ⇔

√
x2 + 2y = C − x, and squaring (for

x ≤ C) yields 2y = C2− 2x, a straight line (needless to point out: intersected with
the domain of de�nition). v ≤ C on/above the line (convex set!) and ≤ C on/below
the line (convex). So v is both quasiconcave and quasiconvex.
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(b) This question tests knowledge of quasiconcavity-based su�cient conditions, where
the su�cient conditions yield no conclusion if the candidate point is stationary for
the objective.

(P1) The point (x1, y1) is a stationary point for u, so su�cient conditions do not
apply (and the point is not optimal, but that was not asked).
Those who got the correct answer that v is both quasiconcave and quasicon-
vex, should not claim that the sign of the multiplier matters, as λv is qua-
siconcave and quasiconvex for both signs. Those who inherited errors from
part (a) should not be penalized in part (b) unless the error destroyes the
problem to be solved.

(P2) The −v and u are both quasiconcave (that means if rewritten with �≤� con-
straint(s): quasiconcave objective and quasiconcave functions in the ≤ con-
straints), and furthermore, ∇v(x2, y2) is not null (indeed, v has no stationary
points). So su�cient conditions apply and (x2, y2) solves problem (P2).

(End of grading guideline. Attached: two pages from the grading committee.)
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Grading ECON4140 spring 2018

These are notes from the grading committee’s work, two pages.

• We deviated from the default uniform weighting. Problem 5 was cut down
to low weight (significantly benefiting the overall score), while Problem 1
was subject to a slight reduction in order not to overweight linear algebra
too much. In the end, these adjustments did have some impact on score,
but only on a very few grades (none for the worse).

• We also stretched the “A” threshold a bit downwards.

This note addresses some of the considerations made, and in particular some
of the common errors – the amount of elementary theoretical shortcomings is
surprising, taking into account that the course is no longer compulsory for any
master programme. Scores stated are averaged over the passing grades, fails
removed; grand average was slightly above 60 percent.

Problem 1

Problem 1 averaged to middle “B” score.

(a) Part (a) had a parameter-dependent rank, and a definiteness question.
Some errors were expected – like the need to symmetrize for definiteness
– but there was a major surprise: a large majority of the papers got rank
right only iff c 6= 0. (Often, rank(A0) was claimed to be 1 – wrong, and
without any attempted justification.)
There was no sign that the difficulties slowed down the candidates (maybe
they should have spent another minute or two?) and overall, part (a) got
a middle “C” score.

(b) “A” for everyone!

(c) Median score = full score. Still, a few did not compute correctly ...

(d) ... and those who did not write out p(λ) in (c), by and large were unable to
calculate the determinant. They tried (hence knew the concept), but were
unable to do the cofactor expansion properly.
Furthermore, more than one paper put c equal to some arbitrary number
and got µ = that number. That is not independent of c.
Nevertheless, this part averaged nearly at the “B/C” threshold.

Problem 2

Problem 2 (a) and (b) averaged together to middle “B” score. Simple mistakes
include going from cos θ = 1/2 to cos t

2 – and in part (b) keeping one of the
constants at zero, inherited from (a).

Part (c) – the high school exam problem – averaged less than the pass mark
of 40 percent. Only a quarter of the candidates made a decent attempt at the
induction step.



Problem 3

(a) Although every paper found at least one (correct or incorrect) point, about
half of the passing candidates (and the fails!) missed one equilibrium point
or more – usually by dividing by zero. The issue is not that these papers
were blank about the concept of stationary states, but the median Mathe-
matics 3 candidate is unable to solve the equations (1− ay − x) · x = 0 =
(1 − bx − y) · y for (x, y) (despite trying hard enough to find at least one
correct or incorrect solution point).
Some who failed to find (x̄, ȳ), but classified a different one. Some score
awarded to the extent they showed ability to do what the second bullet
point set out to test, and so part (a) ended up in the high sixties score,
better than the problem set average.

(b) “F” score for the majority and on the average. Sketching phase diagrams
could be time-consuming, and we can only conjecture that some gave pri-
ority to other questions, given the time budget.

Problem 4

(a) Averaged to a good “B” (closing in on “A”). Two common mistakes were
seen this semester (too): confusing maximum with stationary point, and
forgetting all about bivariate concavity – the infamous “AC − B2” from
ECON2200.

(b) Averaged to the pass mark, despite nearly half the papers scoring zero.

Problem 5

Worst in show, scoring 13 to 14 percent and no better among passing candidates
than failing. Problem 5 had elements one could expect to come out as hard, but
still there were negative surprises, in particular that the median Mathematics
3 student does the ECON2200 “AC − B2” wrong (again!), and no-one could
spot a transformed Cobb-Douglas.

(a) u: The majority of the papers tried and failed to calculate the sign of the
Hessian determinant. Likely a “biased statistic”: (i) wishful thinking,
as some obviously wanted the determinant to be positive in order to
claim concavity or convexity; (ii) candidates who submitted “blank”
could have gotten a negative Hessian and chosen not to submit it
(only one got the correct sign and pointed out it was not helpful).
There was a bordered Hessian to be seen, but nobody identified u as
a strictly increasing transformation of a Cobb–Douglas.

v: All sorts of errors, including: (i) Squaring a sum to the sum of squares;
(ii) Claiming that the square root is a convex function; (iii) Claiming
that the square root of a convex function must be concave.
And even candidates who were able to calculate the level curves alge-
braically, failed to conclude.

(b) Only a couple of papers knew about quasiconcave programs.

(last page)




